
Journal of Computational Physics157,500–538 (2000)

doi:10.1006/jcph.1999.6383, available online at http://www.idealibrary.com on

Discretely Nonreflecting Boundary Conditions
for Linear Hyperbolic Systems1

Clarence W. Rowley and Tim Colonius

Mechanical Engineering 104-44, California Institute of Technology, Pasadena, California 91125
E-mail: clancy@caltech.edu, colonius@caltech.edu

Received April 15, 1999; revised September 23, 1999

Many compressible flow and aeroacoustic computations rely on accurate nonre-
flecting or radiation boundary conditions. When the equations and boundary con-
ditions are discretized using a finite-difference scheme, the dispersive nature of the
discretized equations can lead to spurious numerical reflections not seen in the contin-
uous boundary value problem. Here we construct discretely nonreflecting boundary
conditions, which account for the particular finite-difference scheme used, and are de-
signed to minimize these spurious numerical reflections. Stable boundary conditions
that are local and nonreflecting to arbitrarily high order of accuracy are obtained, and
test cases are presented for the linearized Euler equations. For the cases presented,
reflections for a pressure pulse leaving the boundary are reduced by up to two orders
of magnitude over typical ad hoc closures, and for a vorticity pulse, reflections are
reduced by up to four orders of magnitude.c© 2000 Academic Press

Key Words:nonreflecting boundary conditions; artificial boundary conditions;
finite difference; Euler equations; high-order-accurate methods.

CONTENTS

1. Introduction.
2. Continuous nonreflecting boundary conditions.
3. Discretely nonreflecting boundary conditions.
4. Test cases.
5. Conclusions.

1 Supported in part by NSF Grant CTS-9501349. The first author gratefully acknowledges support under an
NSF Graduate Fellowship. Part of this work was presented in preliminary form in AIAA Paper 98-2220.

500

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press
All rights of reproduction in any form reserved.



DISCRETELY NONREFLECTING BOUNDARY CONDITIONS 501

1. INTRODUCTION

It is well known that finite-difference models of nondispersive (hyperbolic) partial dif-
ferential equations are themselves dispersive (see, e.g., [3, 26, 29]). This dispersive nature
of finite-difference schemes has profound implications for the construction of accurate and
stable artificial boundary conditions, as it can lead to spurious numerical reflections, which
can be a large source of error for sensitive computations. For example, repeated spurious nu-
merical reflections have been found to cause physically unrealistic self-forcing of the flow,
in computations of convectively unstable mixing layers [4, 16]. Nevertheless, dispersion
has been largely ignored in practical implementation of artificial boundary conditions for
the Euler equations of gas dynamics [5, 7, 25]. While boundary conditions that account for
the dispersive effects of discretization have been developed in some special cases [3, 24],
there is no general formulation for linear hyperbolic systems such as the linearized Euler
equations.

The goal of this paper is to present a generalized framework that we have developed
for constructingnumerically(or discretely) nonreflecting boundary conditions, which are
designed to reduce reflections of spurious numerical waves. We present the method for a
class of linear hyperbolic systems, with specific application to the linearized Euler equa-
tions of gas dynamics. The resulting boundary conditions are well posed, can be extended
to arbitrarily high order-of-accuracy, and are naturally written as closures for derivatives
normal to the boundary, so for implicit finite-difference schemes no other closure is neces-
sary. Both physical reflections, due to local approximations in the dispersion relation, and
spurious numerical reflections, due to dispersive effects at finite resolution, are addressed
in this approach. There are some tradeoffs that depend on the specific problem under
consideration—for the linearized Euler equations, for instance, using high-order numerical
closures at the right boundary can increase the error from approximations in the disper-
sion relation—but in general we show that the performance of the boundary conditions is
excellent.

This paper is organized as follows. In Section 2, we describe our procedure for con-
structing continuous (i.e., non-discretized) nonreflecting boundary conditions for linear
hyperbolic systems. This analysis builds on the work of Engquist and Majda [5, 6], and
more recent work by Giles [7] and Goodrich and Hagstrom [8, 9, 12]. We present the im-
portant parts of the analysis in a framework that is readily extended to the discrete case. We
also discuss local approximations to the exact (nonlocal) boundary conditions, and demon-
strate how a powerful theorem of Trefethen and Halpern [27] may be used to determine
well-posedness of the approximate boundary conditions.

These continuous boundary conditions give very accurate results when discretized in a
typical ad hoc way—i.e., when biased or one-sided finite-difference approximations are
used where necessary for derivatives at or near the boundary. However, more robust and
accurate discrete boundary conditions are derived in Section 3, by explicitly considering the
dispersive nature of the finite-difference discretization at the outset. We first show how to
distinguish physical solutions, which resemble solutions of the non-discretized equations,
from spurious solutions, which behave qualitatively differently, and are merely artifacts of
the numerical scheme used. This analysis builds on earlier work by Vichnevetsky [29]. We
then construct boundary conditions that arediscretelynonreflecting, in the sense that they
prevent not only reflection of physical waves, but also reflection of spurious waves from
a boundary. This approach was used by Colonius [3] to derive numerically nonreflecting
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boundary conditions for one-dimensional systems, and here we show how to extend the
analysis to the multidimensional case. The approach is, of necessity, restricted to particular
finite-difference schemes, and we choose the Pad´e three-point central difference to illustrate
the analysis. We conclude by showing the results of several test cases that illustrate the
benefits and limitations of these schemes.

2. CONTINUOUS NONREFLECTING BOUNDARY CONDITIONS

Several distinct approaches have been used in deriving boundary conditions for linear
hyperbolic systems. We briefly review the basic ideas—recent reviews [20, 22, 28] give
further references to the relevant literature.

The first method involves so-called radiation boundary conditions [1], which are based
on asymptotic expansions of the solution produced by a finite source region. Very accurate
local and nonlocal boundary conditions based on this expansion have been developed for
the wave equation (e.g., [10]), but radiation techniques for the linearized Euler equations
[22, 23] are more limited. In a comparison [15] of many different boundary conditions,
the accuracy of these conditions was found to be roughly comparable to Giles’ boundary
conditions, discussed below.

A second technique uses a perfectly matched layer to absorb waves leaving the compu-
tational domain. Such a technique was proposed by Hu [17], who reports problems with
numerical instability, and further analysis and tests [9, 13] demonstrate persistent problems
with well-posedness.

The third technique goes back to the early work of Engquist and Majda [5, 6] and involves
the decomposition of the solution into Fourier/Laplace modes. Exact boundary conditions
are then constructed by eliminating those modes that have a group velocity directed into the
computational domain. The exact conditions are nonlocal in space and time—that is, they are
not expressed as differential equations, but as integrals over all of space and time—but local
approximations to these can be constructed. These involve rational function approximations
to
√

1− z2, wherez is the (spatial) wavenumber in the direction tangent to the boundary
divided by the frequency of the wave. Note that multiplication of a variable by

√
1− z2 in

Fourier space corresponds to a nonlocal operation in real space. The term
√

1− z2 arises
when the dispersion relation for acoustic waves is split into incoming and outgoing modes
at a boundary. For the simple wave equation, Trefethen and Halpern have shown in [27]
that a certain class of rational function approximations leads to stable boundary conditions.
This class doesnot include Taylor series expansions aboutz= 0 higher than second-order.
However, stable Pad´e approximations can be constructed whichreproducethe Taylor series
to arbitrarily high order. The Pad´e approximations are exact for normal waves and give the
highest error for waves whose group velocity is tangent to the boundary.

Unfortunately, the extension of the results for the simple wave equation to the linearized
Euler equations has not been straightforward. Giles [7] found that the second-order Taylor
series expansions of the modified dispersion relation led to ill-posed boundary conditions.
By an ad hoc procedure, Giles modified these conditions to obtain boundary conditions that
are stable, but have limited accuracy.

More recently, Goodrich and Hagstrom [9] described inflow and outflow boundary con-
ditions for the linearized Euler equations that are well posed for arbitrarily high accuracy.
Hagstrom [12] has also developed a series of nonlocal boundary conditions and a local
approximation that is equivalent to the Pad´e approximation to

√
1− z2. Using a somewhat



DISCRETELY NONREFLECTING BOUNDARY CONDITIONS 503

different approach, described in more detail in Subsection 2.2.3, we have derived a similar
hierarchy. Interestingly, the proof of well-posedness for our boundary conditions leads to
conditions on rational function approximations to the square root that are identical to those
derived for the simple wave equation by Trefethen and Halpern [27]. This opens the possi-
bility of a wide variety of boundary conditions that may be specifically tailored to the pro-
blem at hand, e.g., to exactly eliminate reflections of waves at a specified angle to the
boundary. We give an example of such a scheme in Section 4.

2.1. General Theory

Consider the system

ut + Aux + Buy = 0 (2.1)

for 0< x< L, y∈R, whereAandB aren× n matrices andu is a vector withn components.
We will assume that the system (2.1) is strongly hyperbolic, in the sense of [11], and we
note that strictly hyperbolic and symmetric hyperbolic systems fall into this category. In this
paper, we will further assume thatA is invertible, as is the case for the Euler equations of gas
dynamics when they are linearized about a nonzero uniform mean flow. This assumption
does not hold for systems with characteristic boundary, such as Maxwell’s equations, but
we believe it will be possible to extend the techniques presented here to include many such
systems (see Majda and Osher [21]).

In a traditional normal mode analysis, solutions of (2.1) are made up ofn different modes,
which propagate at different speeds. A crucial step in developing boundary conditions
for (2.1) is determining the direction of propagation of each mode, and distinguishing
which modes are “outgoing” and which are “incoming” at the boundary.

Splitting into rightgoing and leftgoing modes.If we take a Fourier transform iny, with
dual variableik, and a Laplace transform int , with dual variables, the system becomes

ûx = −A−1(s I + ikB)û. (2.2)

If we definez= ik/s, we may write

ûx = −sM(z)û, (2.3)

whereM(z)= A−1(I + zB). We wish to separatêu into modes that are “rightgoing” and
modes that are “leftgoing.” Each of these modes corresponds to an eigenvalue ofM(z).
A well known result in the theory of hyperbolic systems is that ifl is the number of
positive eigenvalues ofA, then solutions of (2.1) are made up ofl “rightgoing” modes and
(n− l ) “leftgoing” modes. For wavelike solutions, “rightgoing” and “leftgoing” solutions
correspond to waves with energy traveling in the+x and−x directions, respectively. Not
all solutions to (2.1) are waves, so for non-propagating solutions, the terms “rightgoing”
and “leftgoing” refer to the algebraic labeling from the theory of well-posedness (see [14])
where, for instance, “rightgoing” modes refer to all modes which must be specified at the
left boundary in order to obtain a well-posed problem.

Whenz= 0, M(z)= A−1, so eigenvalues ofM(0) are real and nonzero. Accordingly, the
l rightgoing modes of (2.1) correspond to the eigenvalues ofM(z) that are positive forz= 0,
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and the(n− l ) leftgoing modes correspond to the eigenvalues ofM(z) that are negative for
z= 0.

If the matrix M(z) is diagonalizable,2 then there exists a matrixQ(z) which satisfies

QM Q−1 = 3 =
(
3I 0

0 3II

)
, (2.4)

where3(z) is the matrix of eigenvalues ofM(z), arranged so that3I is an l × l ma-
trix that is positive-definite forz= 0, corresponding to rightgoing solutions, and3II is an
(n− l )× (n− l )matrix that is negative-definite forz= 0, corresponding to leftgoing solu-
tions. (Henceforth, all matrices are functions ofz unless otherwise noted, so we drop the
explicit z dependence.)

Multiplying by Q, (2.3) becomes

Qûx = −s(QM Q−1)Qû, i.e., fx = −s3 f, (2.5)

where f = Qû are the characteristic coordinates. Now we may partition (2.5) into

d

dx

(
f I

f II

)
=−s

(
3I 0

0 3II

)(
f I

f II

)
,

where thef I are now purely rightgoing modes and thef II are leftgoing modes.

Exact nonreflecting boundary conditions.Once this distinction has been made, the
correct nonreflecting boundary conditions follow immediately. Since there are no incoming
modes at a nonreflecting boundary, at the left boundaryx= 0 there should be no rightgoing
modes, so an exact nonreflecting boundary condition is

f I = 0, at x = 0.

At the right boundary, there should be no leftgoing modes, so an exact nonreflecting bound-
ary condition is

f II = 0, at x = L.

To implement these boundary conditions, we must transform back to the original variables
û, and then take the inverse Fourier and Laplace transforms. It is convenient to partitionQ
in the same manner asf ,

Q =
(

QI

QII

)
,

2 All we really require is that theM beblockdiagonalizable in the form (2.4), such that rightgoing and leftgoing
solutions are decoupled. Some theorems given in [11, 14] guarantee that for strongly hyperbolic systems, the
matrix M(ik/s) is always block diagonalizable for Res> 0, and always diagonalizable for wavelike solutions
with Res= 0, except when waves are tangent to the boundary. For tangential waves, the matrixM is not block
diagonalizable in the manner of (2.4), so in deriving the nonreflecting boundary conditions, we exclude this case.
This exclusion does not create a problem, because energy from tangential waves stays at the boundary and does
not propagate into the domain, so it is only necessary to check that the boundary conditions are well posed for
tangential waves. The family of boundary conditions presented in Subsection 2.2 satisfies the uniform Kreiss
condition (see, e.g., Higdon [14] and references therein) and is thus strongly well-posed.
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whereQI is a rectangular matrix of dimensionl × n, andQII has dimension(n− l )× n, so
that the boundary conditions become

QI û = 0, at x = 0

QII û = 0, at x = L ,

which may be implemented by taking the inverse Fourier and Laplace transforms.

Implementation and approximation.Two difficulties arise in implementing the above
boundary conditions. First, since the boundary condition is expressed in Fourier–Laplace
(x, ik, s) space, and in many cases (e.g., the linearized Euler equations) the matrix of
left eigenvectorsQ(z) contains non-rational functions ofik/s (e.g., square roots), when
we transform back to physical(x, y, t) space, the boundary condition will be nonlocal in
both space and time. From a computational perspective, we would prefer a local boundary
condition, which may be obtained by approximating non-rational elements ofQ(z) by
rational functions ofz (e.g., Pad´e approximations).

A second difficulty is that when approximations are introduced, the resulting boundary
conditions may be ill posed. The theory of well-posedness is discussed in detail in [11, 14,
18], and here we summarize some of the important points.

Well-posedness and reflection coefficients.Well-posedness may be viewed as a solv-
ability condition: we must be able to solve for the incoming modes uniquely in terms of the
outgoing modes. To investigate this approach, consider the equation

ûx = −sM(z)û

for 0< x< L, with boundary conditions

EI û = 0, at x = 0

EII û = 0, at x = L ,

whereEI is anl × n matrix, EII is an(n− l )× n matrix, M(z) is given by (2.3), andl is the
number of rightgoing modes (i.e., positive eigenvalues ofM(z= 0)). Let T(z) ≡ Q−1(z)
denote the matrix of right eigenvectors ofM(z) and write

T = (T I T II
)
,

whereT I has dimensionn× l andT II has dimensionn× (n− l ). In terms of the character-
istic variable f = T−1û, the boundary conditions become

EIT f = 0, at x = 0

EII T f = 0, at x = L .

At x= 0, the boundary condition may then be written

EI
(
T I T II

)( f I

f II

)
= 0, i.e.,CI f I + DI f II = 0,
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whereCI := EIT I is anl × l matrix, andDI := EIT II is anl × (n− l ) matrix. Recall that
the f I modes are purely rightgoing and thef II modes are purely leftgoing, so here we may
solve for the incoming (rightgoing) modes as long asCI is nonsingular. In that case,

f I =− (CI
)−1

DI f II = RI f II ,

where thel × (n− l ) matrix RI is the matrix of reflection coefficients.
Similarly, at the right boundary the boundary condition may be written

DII f I + CII f II = 0,

whereCII := EII T II has dimension(n − l )× (n − l ), and DII := EII T I has dimension
(n − l )× l . Here we may solve for the incoming (leftgoing) modes ifCII is nonsingu-
lar, in which case

f II =− (CII
)−1

DII f I = RII f I,

whereRII is the(n− l )× l matrix of reflection coefficients at the right boundary.
For a pair of boundary conditions to be perfectly nonreflecting, the matricesRI andRII

must be identically zero, so the matricesDI andDII must be zero. TakingEI andEII equal
to the left eigenvectorsQI andQII not only makes theDI,II matrices zero, but also makes
theCI,II matrices diagonal. Thus, in order to construct a perfectly nonreflecting boundary
condition it issufficientto use the left eigenvectors (as long as the boundary condition is
well posed), but it is not necessary. Equivalently, it is not necessary that the matrix

C =
(

CI DI

DII CII

)

be diagonal; it is only necessary that it beblockdiagonal.
In order to solve for the incoming modes in terms of the outgoing modes, we required at

the right boundary that the matrixCI be nonsingular, and at the left boundary thatCII be
nonsingular. This requirement is equivalent to the uniform Kreiss condition [11, 14, 18],
which is a sufficient condition for well-posedness, but it is more strict than necessary. As
discussed in [14], for well-posedness all we really require is that the reflection coefficient
matricesRI andRII be bounded for allz∈C, a requirement that is equivalent to the well-
posedness criteria described by Giles [7].

2.2. Application to Euler Equations

In this section we derive continuous nonreflecting boundary conditions for the Euler
equations of gas dynamics. The standard procedure, as described in the previous section, is
to construct the matrixM(z), determine which modes are incoming by looking at the eigen-
values ofM(0), and then to write down the appropriate nonreflecting boundary condition
from the left eigenvectors ofM that correspond to incoming modes.

The linearized Euler equations are a particularly difficult example, because the ex-
act boundary conditions are nonlocal, and all local boundary conditions obtained by ap-
proximating the left eigenvectors by rational functions are ill posed, as we discuss in
Subsection 2.2.3.
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2.2.1. Equations of motion.The isentropic Euler equations of gas dynamics, linearized
about a uniform base flow, may be written

ut +Uux + V uy + px = 0

vt +Uvx + Vvy + py = 0 (2.6)

pt +U px + V py + ux + vy = 0,

whereU andV are the Mach numbers of the uniform base flow in thex andy directions.
Here, the velocitiesu andv are normalized with respect to the (constant) sound speed,
and the pressurep is normalized by the ambient density times the sound speed squared.
Lengths are made dimensionless with an (as yet unspecified) lengthL, and time is made
dimensionless withL and the sound speed. In matrix form, withw= (u, v, p)T , we have

wt + Ãwx + B̃wy= 0,

where

Ã =
U 0 1

0 U 0
1 0 U

 , B̃ =
V 0 0

0 V 1
0 1 V


so the system (2.6) is symmetric hyperbolic, and hence strongly hyperbolic. It is convenient
to diagonalize the matrix̃A by transforming the equations to the variablesq= (v, u+ p,
u− p). The system becomes

qt + Aqx + Bqy= 0, (2.7)

where

A=
U 0 0

0 U + 1 0
0 0 U − 1

 , B=

 V 1/2 −1/2

1 V 0
−1 0 V

 .
Here we assume 0<U < 1 (subsonic flow), so the matrixA is invertible, and we may
construct the matrixM(z)= A−1(I + zB) as in the previous section. Taking a Fourier
transform iny and a Laplace transform in time, with(ik, s) the dual variables of(y, t), the
equations of motion become

q̂x =−s̃M(z)q̂, (2.8)

wheres̃= s+ ikV , z= ik/s̃, and

M(z)=


1
U

z
2U

−z
2U

z
U+1

1
U+1 0

−z
U−1 0 1

U−1

 . (2.9)
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2.2.2. Exact nonlocal boundary conditions.The direction of propagation of the modes
is determined from the eigenvalues ofM(z), which are

λ1 = 1

U

λ2 = U − γ
U2− 1

λ3 = U + γ
U2− 1

,

whereγ (z)=
√

1− z2(1−U2), and where
√· denotes the standard branch of the square

root. Since 0<U < 1, the first two modes are rightgoing (λ1, λ2 > 0 for z= 0), and the
third mode is leftgoing (λ3< 0 for z= 0).

We stated earlier that approximate boundary conditions give the highest error for waves
that are tangent to the boundary. Let us identify these waves for the linearized Euler equa-
tions. Thex-components of the group velocities of the modes are

cg1 = U

cg2 =
U2− 1

U − 1/γ

cg3 =
U2− 1

U + 1/γ
.

Waves are tangent to the boundary when thex-component of the group velocity is zero, so
the last two modes (the acoustic waves) are tangent to the boundary whenγ = 0.

The boundary conditions are found from the left eigenvectors ofM(z), which are the
rows of the matrix

Q(z)=
(

QI

QII

)
=

 2 z(U + 1) z(U − 1)

−2zU 1+ γ 1− γ
−2zU 1− γ 1+ γ

 (2.10)

partitioned intoQI andQII as shown. At the left boundary (x= 0), the appropriate nonre-
flecting boundary condition is then

QI q̂= 0, i.e.,

(
2 z(U + 1) z(U − 1)

−2zU 1+ γ 1− γ
) v̂

û+ p̂

û− p̂

 = 0 (2.11)

and at the right boundary (x= L), the nonreflecting boundary condition is

QII q̂= 0, i.e.,(−2zU 1− γ 1+ γ )
 v̂

û+ p̂

û− p̂

 = 0. (2.12)

These conditions are exact, but they are nonlocal, sinceγ is not a rational function of
z. Furthermore, whenγ is approximated by a rational function, the “inflow” boundary
condition (2.11) is always ill posed, as we will show in the next section.
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2.2.3. Well-posed local approximations.Before discussing local approximations to the
above boundary conditions, and in particular their well-posedness, we require some back-
ground on approximation by rational functions. In order to develop well-posed one-way
boundary conditions for the scalar wave equation, Trefethen and Halpern [27] proved sev-
eral theorems about rational approximations of

√
1− z2. In particular, they proved that if

r0(z) is a rational function that approximates
√

1− z2 for z∈ [−1, 1], then as long asr0(z)
interpolates

√
1− z2 at sufficiently many points in the interval(−1, 1), the equation

r0(z)=−
√

1− z2 (2.13)

has no solutions. The existence of solutions of (2.13) is directly relevant in showing well-
posedness of approximate boundary conditions. Conveniently, the interpolation criteria
mentioned are met for many common categories of approximations. In particular, ifr0(z) is
of degree(m, n) (i.e., the numerator and denominator are polynomials of degreem andn,
respectively), andr0(z) is a Pad´e, Chebyshev, or least-squares approximation to the square
root, the interpolation criteria are met as long asm= n or m= n+ 2.

Now, to obtain local approximations to the exact nonreflecting boundary conditions
derived in the previous section, we replaceγ (z)=

√
1− z2(1−U2) in the boundary con-

ditions (2.11) and (2.12) by a rational functionr (z)= r0(z
√

1−U2), wherer0 meets the in-
terpolation criteria mentioned above. To find the reflection coefficients, as in Subsection 2.1,
we require the matrix of right eigenvectors ofM(z), given by

T(z)= (T I | T II
) =


1 −z −z

zU 1+γ
U+1

1−γ
U+1

zU 1−γ
U−1

1+γ
U−1


partitioned as shown. Computing the matrices of reflection coefficients as described in
Subsection 2.1, at the right boundary we find

RII =− (QII T II
)−1

QII T I = ( 0 R2
)
,

where

R2= (γ − r )(γU − 1)

(γ + r )(γU + 1)
. (2.14)

Now, for well-posedness, we requireR2 be bounded. Clearly, the second factor in the
denominator is never zero, since wheneverγ is real,γ is positive. Additionally, the first
factor in the denominator is never zero, as guaranteed by the theorem of Trefethen and
Halpern. Thus the right boundary condition is well posed. Note, however, that for waves
tangent to the boundary (γ = 0), the reflection coefficient is always unity, independent of
the rational function approximationr .

At the left boundary, the reflection coefficient matrix is

RI =− (QIT I
)−1

QIT II =
(

0
R1

)
,
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where

R1=− (γ − r )(γU + 1)

(γ + r )(γU − 1)
. (2.15)

Here, as before, the first factor in the denominator is never zero, but the second factor is zero
whenz2=−1/U2. Since the reflection coefficient is unbounded for this value ofz, the left
boundary condition is ill posed, regardless of how we choose the approximationr (z). To
obtain a well-posed approximate boundary condition, we must modify the exact boundary
condition given by (2.11).

The modified inflow boundary condition.Recall that the only requirement for a boundary
conditionEIq= 0 to be perfectly nonreflecting is thatEIT II = 0, or physically, that all purely
outgoing modes identically satisfy the boundary condition. Here, at the left boundary there
is only one outgoing mode—the matrixT II is a single column vector, which we denotee3—
so all we require is that the rows ofEI be orthogonal toe3. The matrixQ of left eigenvectors
provides two such rows, given by (2.11), but these row vectors are linearly dependent for
z2=−1/U2, and so the resulting boundary condition is ill posed. We need another way to
come up with row vectors orthogonal toe3.

One way, proposed by Goodrich and Hagstrom [8], is to consider the matrixM − λ3I .
By definition ofe3,

(M − λ3I )e3= 0

so each row ofM − λ3I is a row vector orthogonal toe3. For our case,

M − λ3I =


γU+1

U (1−U2)
z

2U
−z
2U

z
1+U

γ+1
1−U2 0

z
1−U 0 γ−1

1−U2

 . (2.16)

Goodrich and Hagstrom take the second row of this matrix, scaled by the constant 1−U2,
in place of the second row ofQI , to give the pair of boundary conditions

EI q̂ = 0, at x = 0

EII q̂ = 0, at x = L ,
(2.17)

where

EI =
(

2 z(U + 1) z(U − 1)

z(1−U ) 1+ r 0

)
EII = (−2zU 1− r 1+ r ),

(2.18)

where again we have replacedγ with its rational function approximationr . The right
boundary condition is the same as before, but now the reflection coefficient at the left
boundary is

R1=− (γ − r )(γ − 1)

(γ + r )(γ + 1)
(2.19)

which has no poles, and so this boundary condition is well posed. Here again, note that
waves tangent to the boundary are perfectly reflected, regardless of the approximationr .



DISCRETELY NONREFLECTING BOUNDARY CONDITIONS 511

Other approximations. It is interesting to take an arbitrary linear combination of rows
of M − λ3I in place of the second row ofQI . Denoting the three rows ofM − λ3I asx1,
x2, andx3, respectively (where thexj are row vectors), and choosing a linear combination
of thema1x1+ a2x2+ a3x3 in place of the second row ofQ gives the reflection coefficient

R1=−
(
γ − r

γ + r

)(
a1z+ a2(γ − 1)/(1+U )+ a3(γ + 1)/(1−U )

−a1z+ a2(γ + 1)/(1+U )+ a3(γ − 1)/(1−U )

)
. (2.20)

From this expression, several points are evident. First, using the third row ofM − λ3I
(i.e., takinga1=a2= 0, a3= 1) gives an ill-posed boundary condition, because of the
factor (γ − 1) in the denominator. Second, using the first row (a1= 1, a2=a3= 0) gives
a reflection coefficient(γ − r )/(γ + r ), which is greater in magnitude than (2.19) for all
waves. Thus, the second row is the most sensible choice. It is possible to make the reflection
coefficient even smaller than (2.19), by choosing

a1 = 0

a2 = (r + 1)(U + 1)

a3 = (r − 1)(U − 1)

in which case the reflection coefficient (2.20) becomes

R1=−
(
γ − r

γ + r

)2

(2.21)

which approaches zero even faster than (2.19) asr → γ . However, the corresponding row
of the matrixEI (

2z
(r + 1)2

1−U
− (r − 1)2

1+U

)
(2.22)

containsr 2 terms. Thus, while this boundary condition is more accurate than the one
given by (2.17) and (2.18), it also requires more computational effort. In fact, for the same
computational effort we may double the degree of the rational function approximationr
in (2.18) and obtain an even better reflection coefficient. Thus, in what follows we consider
the boundary condition given by (2.17) and (2.18), but note that it may be possible to obtain
better reflection coefficients for other choices ofa1, a2, anda3.

2.2.4. Comparison with previous boundary conditions.Goodrich and Hagstrom [8]
implement the boundary condition given in the previous section using a particular approx-
imation toγ . Their local approximation toγ is identical to the (4,4) Pad´e approximation,
though this is not immediately obvious, because the approximation was derived using a
different approach (approximating a pseudo-differential operator via quadrature) and is ex-
pressed in [12] in terms of partial fractions. We note that the earlier boundary conditions
described by Hagstrom in [12] are actually ill posed at the inflow since these use the ma-
trix of left eigenvectorsQ, from (2.10). Thus his nonlocal approximations toγ (which
have excellent bounds on long-time errors) should presumably be applied in conjunction
with (2.17).

It is of interest to compare the present results with the boundary conditions of Giles [7],
which have been widely used in compressible flow and aeroacoustic calculations.
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Giles [7] provides two boundary conditions. His standard boundary conditions use the left
eigenvectors, with the approximationγ ≈ 1. Thus, the standard inflow boundary condition
is ill posed, as discussed in the previous section, and the outgoing reflection coefficient is
given by (2.14), withr = 1, which gives

RII =
(

0 − (γ − 1)(γU − 1)

(γ + 1)(γU + 1)

)
= (0 O(z2)

)
asz→ 0.

His modified boundary conditions are given by the matrix

E=
 2 z(U + 1) z(U − 1)

z(1−U ) 2 0
−z(1+U ) 0 2


with reflection coefficients

RI =
(

0

− (γ−1)2

(γ+1)2

)
=
(

0

O(z4)

)
asz→ 0

and

RII =
(
−z(1−U )2

(γ + 1)2
− (γ − 1)2

(γ + 1)2

)
= (O(z) O(z4)

)
asz→ 0.

(Note that the reflection coefficients given in [7] differ by constant factors from the ones
given here, because Giles normalizes the right eigenvectors differently.)

For comparison with the boundary conditions presented here, ifr is a Pad´e approximation
of degree(m, n), asz→ 0 our reflection coefficients are

RI =
(

0

O(zm+n+4)

)
and

RII = (0 O(zm+n+2)
)
.

3. DISCRETELY NONREFLECTING BOUNDARY CONDITIONS

If the nonreflecting boundary conditions discussed in the previous section are to be used
in conjunction with a finite-difference method for solving the system (2.1), the boundary
conditions must be discretized and combined with finite-difference equations for the interior
points. Typically, details of this implementation have not been discussed in the literature.
Often implementation involves ad hoc boundary closures for finite-difference schemes (one-
sided schemes at the boundaries, and special schemes for near boundary nodes when large
stencil interior schemes are used). Some specific schemes have been presented for compact
finite-difference schemes [19], and for dispersion-relation preserving (DRP) schemes [23].
However, a detailed analysis of accuracy and stability of these schemes has not been carried



DISCRETELY NONREFLECTING BOUNDARY CONDITIONS 513

out when they are applied to various boundary conditions. In a more rigorous treatment,
Carpenteret al. [2] have proposed particular boundary closures for high-order finite-
difference approximations to one-dimensional hyperbolic systems. These schemes are con-
structed to couple physical boundary conditions to the boundary closure of the finite-
difference scheme and can be proven to be stable. However, the boundary conditions
they use do not account for the dispersive nature of the finite-difference scheme and
do not attempt to control the extent to which spurious waves are reflected by smooth
waves.

Spurious waves, which will be formally defined in Subsection 3.1, are an artifact of
the discretization, and have been extensively analyzed by Vichnevetsky [29] for the one-
dimensional advection equation. In a previous paper [3], we showed how to develop closures
for both downstream and upstream boundaries of the simple advection equation. These
boundary conditions maintain the desired order of accuracy of the interior scheme, are stable,
and minimize reflection of smooth and spurious waves at artificial boundaries. The closure
for the “downstream” boundary of the simple advection equation is similar to a closure
of the finite-difference scheme, at least up through the order of accuracy of the interior
scheme. “Upwind” boundary closures, however, are not derivative operators but instead are
designed to eliminate any reflection of upstream-propagating spurious waves. The hierarchy
of upwind conditions contains, as a special case, the upwind boundary conditions developed
by Vichnevetsky [29].

We first review this previous work on the simple advection equation, and in Subsection 3.2
we extend the methodology to obtain numerically nonreflecting boundary conditions for
a system of one-dimensional equations in which all solutions to the continuous equations
propagate in the same direction (one-wayequations). We then show in Subsection 3.3 how
these results may be applied directly to two-dimensional equations of the form (2.1), again
so long as all the physical modes travel in the same direction. An example of such a problem
is the Euler equations linearized about a supersonic mean flow. Finally, in Subsection 3.4
we treat the more generaltwo-wayequations of the form (2.1), such as the Euler equations
linearized about a subsonic mean flow. The general procedure is to use the continuous
boundary conditions of Section 2 to split the system into two one-way equations, and then
apply the discrete boundary conditions of Subsection 3.3 to each one-way system.

3.1. Finite Difference Schemes and Spurious Waves

Several artifacts of finite difference approximations to hyperbolic equations play promi-
nent roles in the development of accurate and robust artificial boundary conditions. In this
section we introduce these phenomena in the context of the simple scalar advection equation
in one dimension

ut + ux = 0 (3.1)

which admits solutions of the form

u(x, t)= ei (kx−ωt). (3.2)

Inserting (3.2) into (3.1) gives the dispersion relationω= k, so for this example the phase
velocity (cp=ω/k) and group velocity (cg= dω/dk) both equal 1.
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We are interested in how discretization affects the above dispersion relation. We restrict
our attention to the family of three-point central finite difference schemes given by

α(ux) j+1+ (ux) j + α(ux) j−1= a

h
(u j+1− u j−1), (3.3)

where we have introduced a uniform grid inx, with mesh spacingh, and whereu j (t) de-
notes the approximation tou( jh, t). See [19] for a detailed discussion of compact difference
schemes. For our purposes, it suffices to note that ifα= 0 anda= 1/2, we recover the stan-
dard second-order central difference scheme discussed above, and ifα= 1/4 anda= 3/4,
we obtain the fourth-order Pad´e scheme. The extension to wider stencils is discussed briefly
below.

In this paper we consider exclusively a semi-discrete scheme, and hence neglect dispersive
and dissipative effects of time discretization. Vichnevetsky [29] has shown that the energy
reflected at a boundary is invariant under time discretization and is equal to the energy
reflected in the semi-discrete case. Moreover, in cases when the semi-discrete equation is
solved with a 4th-order Runge–Kutta method, it has been shown in the one-dimensional case
that the additional dispersion and dissipation are essentially negligible for CFL numbers
smaller than one (see [3]).

For the schemes given by (3.3), the modified wavenumber is

k̃h= 2a sinkh

1+ 2α coskh
.

Figure 1 shows the dispersion relationω= k̃ and group velocity for the second- and fourth-
order schemes applied to the scalar advection equation (3.1).

Note that well-resolved waves (kh¿ 1) travel with approximately the same group ve-
locity as solutions of the continuous equation, but poorly resolved waves (increasingkh)
travel with unphysical group velocities, and the most poorly resolved waves (kh≈π ) travel
in the opposite direction. These waves that travel in the wrong direction have been called
spurious numerical waves, after Vichnevetsky [29].

Finally, note that for each frequencyω (below some critical valueωc), there corresponds
twovalues ofk that satisfy the dispersion relation: a “physical” solution which travels in the
correct direction (cg> 0), and a “spurious” solution which travels in the opposite direction
(cg< 0), while for the continuous equation there was only one wavenumberk for each

FIG. 1. Dispersion relation for the simple advection equation, with exact derivative, —; second-order central
difference scheme, - - -; and fourth-order Pad´e method, -· -; and corresponding group velocity for the same schemes.
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frequencyω. The two numerical solutions are uncoupled in the interior, but are (usually)
coupled by the boundary conditions. Even in the simple one-way advection equation, phys-
ical waves reflect as spurious waves at the downwind boundary, with the opposite reflection
at the upwind boundary.

Difference approximations with larger stencils than (3.3) will have more than one spu-
rious solution, though additional solutions will be spatially damped. If we wish to develop
nonreflecting boundary conditions, we must consider how all of the physical and spuri-
ous solutions are coupled at the boundary and attempt to minimize any reflections. For
larger stencils, the algebra becomes significantly more complicated. In order to concisely
demonstrate the procedure, we restrict our attention here to the 3-point stencil.

3.2. One-Dimensional Numerical Boundary Conditions

Here we generalize the numerically nonreflecting boundary conditions derived by
Colonius [3] for the scalar advection equation

ut + cux = 0,

whereu is a scalar, and apply this methodology to the system of partial differential equations

ux =−Mut (3.4)

for 0< x< L, whereu is a vector withn components, andM is ann× n positive-definite
matrix. Although the matrixM is diagonalizable, here we shall not exploit this property, as
this in general is not the case for problems beyond one dimension. The following analysis
is readily applicable to the multidimensional case, addressed in Subsections 3.3–3.4.

Separation of spurious and physical modes.Let us begin by identifying the spurious
and physical modes in a finite-difference approximation to (3.4). Introduce a regular grid
in x, with mesh spacingh, and letuk denote the approximation tou(x= kh). Applying the
family of three-point finite difference schemes mentioned in the previous section to (3.4)
gives

α(−Mut )k+1+ (−Mut )k + α(−Mut )k−1= a

h
(uk+1− uk−1). (3.5)

Now introduce a (normal mode) solution of the form

uk(t)= û eiωtκk, (3.6)

whereû∈Rn, ω∈R, andκ ∈C, so that

uk+1= κ uk (3.7)

and (3.5) becomes[
κ2(aI + αiωhM)+ κ(iωhM)− (aI − αiωhM)

]
û= N(iω, κ)û= 0, (3.8)

whereN(iω, κ) is the matrix in brackets. This linear system has nontrivial solutions only
when

detN(iω, κ)= 0. (3.9)
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Equation (3.9) is the dispersion relation for the discretized system. Without loss of generality
we may assume the matrixM is in Jordan form (similarity transform Eq. (3.8)), and so

detN(iω, κ)=
n∏

j = 1

[
κ2(a+ αiωhλ j )+ κ(iωhλ j )− (a− αiωhλ j )

]
,

where theλ j ( j = 1, . . . ,n) are eigenvalues ofM . Defining

φ j =ωhλ j , for j = 1, . . . ,n

and solving (3.9) forκ gives

κ± j =
−iφ j ±

√
4a2− φ2

j (1− 4α2)

2(a+ αiφ j )
, (3.10)

where theκ± j satisfy

(κ± j )2(a+ αiφ j )+ κ± j iφ j − (a− αiφ j )= 0

for all j = 1, . . . ,n. Solutions are waves when|κ| =1, which corresponds to|φ j | ≤φc,
whereφc= 2a/

√
1− 4α2. Note that the number of roots (3.10) of the dispersion relation

for the discretized equations is 2n, while the dispersion relation of the non-discretized system
has onlyn roots, corresponding to then eigenvalues ofM . Here, theκ+ roots correspond to
the “physical” solutions, and theκ− roots correspond to the “spurious” modes mentioned in
the previous section. Higher order difference schemes will have additional spurious modes.

To distinguish the physical parts of the solution from the spurious parts, we consider a
solution that is a superposition of modes of the form (3.6) and write the solutionuk at any
grid pointk as

uk=
n∑

j = 1

(
u+ j

k + u− j
k

)
,

where theu± j
k are normal modes of the form (3.6) that satisfy

N(iω, κ± j )u± j
k = 0

for all j = 1, . . . ,n. Note that

u± j
k+1= κ± j u± j

k .

Exact nonreflecting boundary conditions.The exact nonreflecting boundary condition
at the left boundary (k= 0) isu+ j

0 = 0 for j = 1, . . . ,n. This is equivalent to

u j
0=

1

κ− j
u j

1, for all j = 1, . . . ,n (3.11)
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since (3.11) may be written

u+ j
0 + u− j

0 =
1

κ− j

(
u+ j

1 + u− j
1

)
⇔ u+ j

0 + u− j
0 =

κ+ j

κ− j
u+ j

0 + u− j
0

⇔
(

1− κ
+ j

κ− j

)
u+ j

0 = 0

⇔ u+ j
0 = 0

sinceκ+ j 6= κ− j (unlessφ=φc). Similarly, the exact nonreflecting boundary condition at
the right boundary (k= N) may be written

u j
N = κ+ j u j

N−1. (3.12)

Because theκ± j , given by (3.10), are not rational functions of the frequencyω, when the
boundary conditions (3.11) and (3.12) are transformed back into physical space they will
be nonlocal in time, as mentioned earlier. We wish to derive approximate nonreflecting
boundary conditions that are local in space and time.

Approximate nonreflecting boundary conditions.After Colonius [3], we consider a nu-
merical boundary condition at the left boundary(k= 0) in the form of a closure for the
x-derivative. That is, we seek an approximately nonreflecting boundary condition of the
form

M
du0

dt
= 1

c1h

Nd∑
k= 0

dkuk,

wherec1 anddk(k= 0, . . . , Nd) are coefficients to be determined andM is still the matrix
from (3.4). Taking a Fourier transform in time and splittingu into its rightgoing and leftgoing
modes, the boundary condition becomes

c1iωhM
n∑

j = 1

(
u+ j

0 + u− j
0

) = Nd∑
k= 0

dk

(
n∑

j = 1

(
u+ j

k + u− j
k

))
(3.13)

⇔
n∑

j = 1

(
c1iωhMu+ j

0 −
Nd∑

k= 0

dk(κ
+ j )ku+ j

0

)
=

n∑
j = 1

(
− c1iωhMu− j

0 +
Nd∑

k= 0

dk(κ
− j )ku− j

0

)
.

(3.14)

Now, it is shown in the Appendix that

N(iω, κ± j )u= 0⇔ Mu= λ j u. (3.15)

Hence,

Mu± j = λ j u
± j , j = 1, . . . ,n
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and so, writingφ j =ωhλ j , and recalling from (3.10) that for a particular schemeκ± j is a
function only ofφ j , (3.14) becomes

n∑
j = 1

c(φ j )u
+ j
0 =

n∑
j = 1

d(φ j )u
− j
0 , (3.16)

where

c(φ j ) = c1iφ j −
Nd∑

k= 0

dk(κ
+ j )k

(3.17)

d(φ j ) = −c1iφ j +
Nd∑

k= 0

dk(κ
− j )k.

Now for the boundary condition to be exact (u+ j
0 = 0, ∀ j ), we required(φ)= 0, and for the

boundary condition to be well-posed we required(φ)/c(φ) be bounded. So, we pick the
coefficientsc1 anddk in order to minimized(φ) in some sense. Here, we consider the Taylor
series ofd(φ) aboutφ= 0 and choose the coefficients so that as many terms as possible
in the Taylor series are zero. Note thatφ is proportional toh, and thus a Taylor series
expansion aboutφ= 0 is consistent with the convergence of the discrete approximation in
the limit ash→ 0. The resulting errors (and reflections) areO(φNd+1) asφ→ 0. Well-posed
schemes of various orders were derived in [3]; some of these are repeated for convenience in
Table I. (The column labeled bc0 is an ad hoc boundary condition which will be discussed in
Section 4.) Apparently, stable schemes to arbitrarily high order can be determined (see [3]).

The right boundary condition is treated similarly. For the pointuN we start with

a1hM
duN

dt
=

Nb∑
k= 0

bkuN−k,

wherea1 andbk (k= 0, . . . , Nb) are coefficients to be determined. Separating the spurious
and physical modes, as above, gives

n∑
j = 1

a(φ j )u
+ j
N =

n∑
j = 1

b(φ j )u
− j
N (3.18)

where

a(φ j ) = a1iφ j −
Nb∑

k= 0

bk

(κ+ j )k

(3.19)

b(φ j ) = −a1iφ j +
Nb∑

k= 0

bk

(κ− j )k
.

Here, for the boundary condition to be exact (u− j
N = 0, ∀ j ), we requirea(φ)= 0, while
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TABLE I

Coefficients for Numerically Nonreflecting Boundary Conditions,

with the Interior Scheme a= 3/4,α = 1/4

Scheme bc0 bc1 bc2 bc4 bc6 bc8
Order — 2 3 5 7 9

a1 1 2 12 72 432
b0 −1 −3 −25 −175 −1143
b1 1 4 48 424 3236
b2 −1 −36 −521 −5366
b3 16 456 6852
b4 −3 −253 −6208
b5 80 3868
b6 −11 −1578
b7 380
b8 −41

c1 1 −1 −2 −4 −8 −16
d0 0 3 9 45 189 747
d1 3 12 120 792 4380
d2 3 132 1539 12318
d3 72 1704 20796
d4 15 1095 22560
d5 384 15972
d6 57 7170
d7 1860
d8 213

a(φ)/b(φ) remains bounded, so we choose the coefficients so that as many terms as possible
in the Taylor expansion ofa(φ) are zero. These coefficients are also given in Table I, and
for the right boundary condition the reflections areO(φNb+1) asφ→ 0. See [3] for a more
general treatment of boundary conditions of this type; this reference also demonstrates how
to write numerically nonreflecting boundary conditions for boundaries where incoming
waves are specified, as in a scattering problem.

For future reference, we introduce a more concise notation for the numerical boundary
conditions. At the right boundary, where all physical waves are outgoing, we write the
boundary condition as

−M
duN

dt
= do

NuN, (3.20)

where doN is the operator defined by

do
NuN =− 1

a1h

Nb∑
k= 0

bkuN−k. (3.21)

At the left boundary, where the physical waves are incoming, the numerical boundary
condition is similarly written

−M
du0

dt
= di

0u0, (3.22)
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where di0 is defined by

di
0u0=− 1

c1h

Nd∑
k= 0

dkuk. (3.23)

Note that these boundary conditions apply only whenM is positive-definite. Similar bound-
ary conditions may also be derived for the case whenM is negative-definite, and the coeffi-
cients merely change sign. WhenM < 0, physical waves are incoming at the right boundary
and outgoing at the left boundary, and the resulting boundary conditions are written

−M
duN

dt
= di

NuN (3.24)

−M
du0

dt
= do

0u0 (3.25)

where diN and do0 are defined by

di
NuN = 1

c1h

Nd∑
k= 0

dkuN−k (3.26)

do
0u0 = 1

a1h

Nb∑
k= 0

bkuk. (3.27)

Note that with this notation, the boundary conditions given by (3.20), (3.22), (3.24),
and (3.25) take the form of the original Eq. (3.4), with the operators di,o

0,N acting as clo-
sures for thex-derivative. So as long as we have aone-wayequation, we can immediately
apply a discrete nonreflecting boundary condition just as easily as applying a closure for a
derivative.

3.2.1. Single mode reflection coefficients.The numerical boundary conditions given
in Table I are, of course, approximate. One way to quantify the error introduced by the
approximation is by means of a reflection coefficient. Take the right boundary first, and
consider how a single outgoing modeu+ j is reflected. From (3.18), we have

a(φ j )u
+ j
N = b(φ j )u

− j
N

⇒ ∥∥u− j
N

∥∥ = ∣∣∣∣a(φ j )

b(φ j )

∣∣∣∣ ∥∥u+ j
N

∥∥
= ∣∣ρo(φ j )

∣∣ ∥∥u+ j
N

∥∥,
whereρo=a/b is the numerical reflection coefficient for the outflow boundary condition
do. It describes the spurious wave reflected by an outgoing physical wave. Similarly, at the
left boundary we have ∥∥u+ j

0

∥∥= ∣∣ρ i (φ j )
∣∣ ∥∥u− j

0

∥∥,
whereρ i = d/c is the numerical reflection coefficient for the inflow boundary condition di ,
and describes the physical wave reflected by an outgoing spurious wave. The magnitudes
of the reflection coefficients are plotted for several choices of coefficients in Fig. 2. Note
that waves at the critical frequency always suffer pure reflection.
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FIG. 2. Inflow and outflow reflection coefficients for boundary conditions bc2,· · ·; bc4, -· -; bc6, - - -; and
bc8, —; from Table I.

3.3. Numerical Boundary Conditions for One-Way Systems

As before, consider the system

ut + Aux + Buy= 0 (3.28)

for 0< x< L, y∈R, whereu is a vector withn components, andA andB are matrices, but
now consider the special case whereA is a definite matrix. As described in Section 2, ifA
is positive-definite, then then modes of (3.28) all travel to the right, and ifA is negative-
definite, the modes all travel to the left. Hence, we refer to this special case as aone-way
system, and for such systems the discrete boundary conditions of Subsection 3.2 may be
applied directly.

First, note that it is trivial to write a nonreflecting boundary condition for the continuous
equations. If for instanceA> 0, then at the right boundary (x= L), all modes are outgoing,
so no boundary condition is specified, and at the left boundary all solutions are incoming,
so the nonreflecting boundary condition is merelyu(0, y, t)= 0. When the equations are
discretized, however, the problem is not trivial.

The analysis of the previous two sections shows that when the equations are discretized,
spurious modes will be introduced which will travel in the opposite direction as the physical
modes. Thus,n physical modes will still travel to the right, but nown spurious modes will
travel to the left, and so it is important to use discrete nonreflecting boundary conditions at
both boundaries to avoid numerical reflections.

Taking a Fourier–Laplace transform of (3.28), with(ik, s) the dual variables of(y, t),
and definingz= ik/s as before, we have

ûx =−sM(z)û, (3.29)

where M(z)= A−1(I + zB). Now, we have an equation which resembles the one-
dimensional system (3.4), except that now the matrixM is a function ofz. Thisz-dependence
carries through the analysis of Subsection 3.2 unaltered, so from Eqs. (3.20) and (3.22) we
may immediately write down nonreflecting boundary closures for the discretized equations
as

−sM(z)u0 = di
0u0 (3.30)

−sM(z)uN = do
NuN, (3.31)
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where the operators di
0 and doN are defined by (3.23) and (3.21). Taking the inverse Fourier–

Laplace transforms, we are left with

∂u0

∂t
+ Adi

0u0+ B
∂u0

∂y
= 0 (3.32)

∂uN

∂t
+ Ado

NuN + B
∂uN

∂y
= 0 (3.33)

which is exactly the form of the original Eq. (3.28) with the operators di
0 and doN taking the

form of closures for thex-derivative. Typical boundary closures used for one-way equations
(such as the Euler equations linearized about a supersonic flow) useu0= 0 in place of (3.32)
and use a one-sided difference approximation to thex-derivative in place of doN in (3.33).
Such an ad hoc approach gives a greater reflection of physical waves into spurious waves
at the downstream boundary, andperfect reflectionof spurious waves into physical waves
at the upstream boundary.

3.4. Numerical Boundary Conditions for Two-Way Systems

We now derive numerically nonreflecting boundary conditions for two-way systems, in
which the continuous equations admit both rightgoing and leftgoing solutions. The idea
is to use the boundary conditions for the continuous equations to decouple the two-way
system into two one-way systems, and then to apply the discrete boundary conditions of
the previous section to each one-way system.

Consider again the system (3.28), written in the transformed form

ûx =−sM(z)û

and assume for the moment that we have access to a pair of perfectly nonreflecting boundary
conditions for the continuous equations, which we write (as in Section 2) as

EI û = 0, at x= 0
(3.34)

EII û = 0, at x= L,

whereEI andEII may be functions ofz. Now define the square matrix

E(z)=
(

EI

EII

)

and letT(z) be the matrix of right eigenvectors ofM(z), arranged so that

T−1MT =3=
(
3I 0

0 3II

)
, (3.35)

where3I is positive-definite forz= 0 (rightgoing), and3II is negative-definite forz= 0
(leftgoing). Since the boundary condition (3.34) is perfectly nonreflecting, it follows (see
Subsection 2.1) that the matrix

C := ET=
(

CI 0

0 CII

)
(3.36)
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is block diagonal. Furthermore, if both boundary conditions are well posed, it follows that
C is invertible, and hence the square matrixE is invertible. We now use the matrixE to
transform to a coordinate system where rightgoing and leftgoing modes are decoupled. Let
g= Eû. Then

d

dx
Eû=−s(E M E−1)Eû, i.e.,

d

dx
g=−s8g, (3.37)

where

8 := E M E−1 = E(T3T−1)E−1

= C3C−1

=
(

CI 0

0 CII

)(
3I 0

0 3II

)(
CI−1

0

0 CII−1

)

=
(
8I 0
0 8II

)
.

The eigenvalues of8I and8II are the same as the eigenvalues of3I and3II , respectively,
so Eq. (3.37) is a system of two decoupledone-wayequations

d

dx
gI = −s8IgI

d

dx
gII = −s8II gII ,

where the first equation has purely rightgoing solutions (8I > 0 for z= 0), and the second
equation has purely leftgoing solutions (8II < 0 for z= 0). Since the rightgoing and left-
going modes are now decoupled, we may apply the numerical boundary conditions from
Section 3 to each equation. Introducing a regular grid inx with mesh spacingh and letting
gk denoteg(x= kh), at the left boundaryk= 0 we may write the discrete (approximately)
nonreflecting boundary condition

−s8IgI
0 = di

0gI
0 (3.38)

−s8II gII
0 = do

0gII
0 (3.39)

and at the right boundaryk= N we have the boundary condition

−s8IgI
N = do

NgI
N (3.40)

−s8II gII
N = di

NgII
N . (3.41)

As described in Subsection 3.2, these discrete boundary conditions are nonreflecting up to
arbitrarily high-order accuracy ash→ 0, and note that this is the first approximation that
has been made. Defining the matrix operators

DL =
(

di
0I 0

0 do
0 I

)
(3.42)

DR =
(

do
N I 0

0 di
N I

)
,
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where I denotes the identity matrix of appropriate dimension, and recalling thatg= Eû
and8E= E M, the boundary conditions become

−sE(z)M(z)û0 = DL E(z)û0
(3.43)

−sE(z)M(z)ûN = DRE(z)ûN .

So far, we have assumed that the boundary conditions (3.34) for the continuous equations
were perfectly nonreflecting. For many examples, including the linearized Euler equations,
the exact boundary conditions are nonlocal in space and time (i.e., the matrixE(z) contains
non-rational functions ofz), so it may be desirable to replaceE(z) with an approximation
E′(z) that is rational. For the linearized Euler equations (cf. Subsection 2.2), this approxi-
mation corresponds to replacingγ (z)with an approximationr (z). When this approximation
is introduced, the matrixC in (3.36) will not be exactly block diagonal, but will have small
off-diagonal terms, and so the subsequent equations will not be perfectly decoupled, and
errors will be introduced. The errors for such local, approximately nonreflecting boundary
conditions can be analyzed, as follows, by considering the reflection coefficients.

3.4.1. Discrete reflection coefficients.Take the left boundary first and consider the
approximately nonreflecting boundary condition

−sE′Mû0= DL E′û0 (3.44)

and transform to characteristic variablesf = T−1û to obtain

−sC3 f0= DLC f0, (3.45)

where now the matrix

C := E′T =
(

CI DI

DII CII

)
(3.46)

is not perfectly block diagonal. Writing (3.45) as

(
di

0I 0

0 do
0 I

)(
CI DI

DII CII

)(
f I
0

f II
0

)
+ s

(
CI DI

DII CII

)(
3I 0

0 3II

)(
f I
0

f II
0

)
= 0 (3.47)

and recalling from Subsection 2.1 the continuous reflection coefficient matricesRI =
−(CI)−1DI andRII =−(CII )−1DII , the boundary condition becomes

(
di

0+ s3I
)

f I
0 − RI

(
di

0+ s3II
)

f II
0 = 0 (3.48)(

do
0 + s3II

)
f II
0 − RII

(
do

0 + s3I
)

f I
0 = 0. (3.49)

Since f I are purely rightgoing modes andf II are purely leftgoing modes, it is clear from
these equations that when the reflection coefficient matrices are not identically zero, we are
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applying the wrong numerical boundary condition to some of the waves at the boundary.
For instance, in the second term of (3.48), we are incorrectly applying the di operator to an
outgoing wavef II , and in the second term of (3.49) we are applying the do operator to an
incoming wavef I . These are the terms that arise from imperfect decoupling and will cause
reflections.

To proceed, we split the solutionf into physical and spurious partsf + and f −, as
in Subsection 3.2. Since3 is diagonal (with diagonal elementsλ j ), we may easily write
(di

0+ s3) f0 in terms of components

(
di

0+ sλ j
)(

f + j
0 + f − j

0

) = − 1

c1h

Nd∑
k= 0

dk
(

f + j
k + f − j

k

)+ sλ j
(

f + j
0 + f − j

0

)
= 1

c1h

(
c1shλ j −

Nd∑
k= 0

dk(κ
+ j )k

)
f + j
0

− 1

c1h

(
− c1shλ j +

Nd∑
k= 0

dk(κ
− j )k

)
f − j
0

= 1

c1h

(
c(φ j ) f + j

0 − d(φ j ) f − j
0

)
, (3.50)

whereκ± j are the shift operators from Subsection 3.2,c(φ) andd(φ) are defined by (3.17),
andiφ j = shλ j . Similarly, we have

(
do

0 + sλ j
)(

f + j
0 + f − j

0

) = − 1

a1h

(
ā(φ j ) f + j

0 − b̄(φ j ) f − j
0

)
(
do

N + sλ j
)(

f + j
N + f − j

N

) = − 1

c1h

(
c̄(φ j ) f + j

N − d̄(φ j ) f − j
N

)
(3.51)

(
di

N + sλ j
)(

f + j
N + f − j

N

) = 1

a1h

(
a(φ j ) f + j

N − b(φ j ) f − j
N

)
,

wherea(φ) andb(φ) are given by (3.19) and̄a denotes the complex conjugate ofa. (Note
that κ̄± j = 1/κ± j as long as|φ j | ≤ φc.) Then (3.48) and (3.49) become

C1 f I+
0 − D1 f I−

0 − RI
(
C2 f II+

0 − D2 f II−
0

)= 0
(3.52)

Ā2 f I+
0 − B̄2 f I−

0 − RI
(

Ā1 f II+
0 − B̄2 f II−

0

)= 0,

whereĀ1,2, B̄1,2, C1,2, andD1,2 are diagonal matrices of the form

Ā1 =

ā(φ1)

. . .

ā(φl )

 , Ā2=

ā(φl+1)

. . .

ā(φn)


(3.53)

C1 =

c(φ1)

. . .

c(φl )

 , C2=

c(φl+1)

. . .

c(φn)

 , etc.
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Solving for the incoming modes in terms of the outgoing modes, we have(
f I+
0

f II−
0

)
=
(

I C−1
1 RI D2

B̄−1
2 RII Ā1 I

)−1(
C−1

1 D1 C−1
1 RIC2

B̄−1
2 RII B̄1 B̄−1

2 Ā2

)(
f I−
0

f II+
0

)
, (3.54)

where the matrix on the right hand side is the matrix of reflection coefficients. An identical
analysis for the right boundary condition

−sE′MûN = DRE′ûN (3.55)

gives the reflection coefficients(
f I−
N

f II+
N

)
=
(

I B−1
1 RI A2

C̄−1
2 RII D̄1 I

)−1(
B−1

1 A1 B−1
1 RI B2

C̄−1
2 RII C̄1 C̄−1

2 D̄2

)(
f I+
0

f II−
0

)
. (3.56)

Recall from Subsection 3.2.1. that the matricesB−1A andC−1D represent thediscrete
reflection coefficients for the given numerical boundary condition. As thecontinuousre-
flection coefficient matricesRI and RII go to zero, then, we retrieve the one-dimensional
numerical reflection coefficients. IfRI andRII are not zero, we may compute the necessary
inverses using the general formula(

I X
Y I

)−1

=
(

I + X1−1Y −X1−1

−1−1Y 1−1

)
(3.57)

as long as1= I − Y X is invertible. For the local boundary conditions presented in Sub-
section 2.2 for the subsonic linearized Euler equations, the reflection coefficients at the left
boundary are

 f +1

f +2

f −3

=

ρ i (φ1) 0 0

0 ρ i (φ2)
1
1L

(
1−R1R2

b̄(φ2 )d(φ3)

b̄(φ3)d(φ2)

)
R1

1
1L

(
c(φ3 )

c(φ2)
− ā(φ3 )d(φ3)

b̄(φ3)c(φ2)

)
0 R2

1
1L

(
b̄(φ2 )

b̄(φ3)
− ā(φ2 )d(φ2)

b̄(φ3)c(φ2)

)
ρ̄o(φ3)

1
1L

(
1− R1R2

ā(φ2 )c(φ3)

ā(φ3)c(φ2)

)

 f −1

f −2

f +3

 ,

(3.58)

where1L = 1− R1R2(ā(φ2) d(φ3))/(b̄(φ3)c(φ2)), and at the right boundary are

 f −1

f −2

f +3

=

ρo(φ1) 0 0

0 ρo(φ2)
1
1R

(
1−R1R2

a(φ3)c̄(φ2 )

a(φ2 )c̄(φ3)

)
R1

1
1R

(
b(φ3 )

b(φ2)
− a(φ3 )d̄(φ3)

b(φ2 )c̄(φ3 )

)
0 R2

1
1R

(
c̄(φ2 )

c̄(φ3)
− a(φ2 )d̄(φ2)

b(φ2 )c̄(φ3)

)
ρ̄ i (φ3)

1
1R

(
1− R1R2

b(φ3 )d̄(φ2)

b(φ2 )d̄(φ3 )

)

 f +1

f +2

f −3

 ,

(3.59)

where1R= 1− R1R2(a(φ3) d̄(φ2))/(b(φ2)c̄(φ3)).
It is worth mentioning several features of the reflection coefficients given above. Of

course, for the discrete system there are nine reflection coefficients at each boundary, while
for the continuous system there are only two at each boundary (cf. Subsection 2.2.3). Note
that the vorticity wavef 1 is perfectly decoupled from the acoustic wavesf 2 and f 3, even
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when the boundary conditions are discretized. This result may seem obvious, but it isnot
the case for typical ad hoc closures.

Note, however, that the continuous reflection coefficientsR1 and R2 are multiplied by
coefficients that depend on the numerical boundary closure used. Most of these coefficients
(e.g.,ρo, ρ i ) become smaller as the order of the numerical boundary conditions given in
Table I increases. However, some of them increase, so we must be careful when deciding
which numerical boundary condition to use. This point will be discussed further when test
cases are presented in Section 4.

3.5. Implementation of High-Order Boundary Conditions

Even though the boundary conditions given by (3.44) and (3.55) are local, they involve
potentially high-order derivatives in time and space. In order to implement them efficiently,
it is desirable to write the high-order equations instead as systems of first-order equa-
tions. Goodrich and Hagstrom [8, 12] accomplish this by expanding rational functions in
partial fractions and introducing state variables (auxiliary variables). We present an alterna-
tive approach, analagous to the standard method by which high-order ordinary differential
equations are reduced to systems of first-order equations.

First, it is useful to rewrite the boundary conditions as closures for thex-derivative. A
closure is necessary whenever an implicit finite-difference scheme is used, and formulating
the boundary condition in this way is useful also for explicit schemes, as the boundary
points are solved using the same equations as the interior points. Thus we use the interior
equations

ûx =−sM(z)û=−s A−1(I + zB)û (3.60)

to rewrite the boundary conditions (3.44) and (3.55) as the boundary closures

E′(z)
∂û0

∂x
= DL E′(z)û0

(3.61)

E′(z)
∂ûN

∂x
= DRE′(z)ûN,

where∂û0/∂x and∂ûN/∂x denote the closures for the derivatives at the boundaries. Now,
the matrixE′ is a rational function ofz, but by multiplying each row of this equation by its
least common denominator we may obtain a new system that is polynomial inz,

E′′(z)
∂û0

∂x
= DL E′′(z)û0

(3.62)

E′′(z)
∂ûN

∂x
= DRE′′(z)ûN,

where now the matrix

E′′(z)= E0+ zE1+ · · · + zpEp (3.63)

is a polynomial inz. If we were to multiply through bysp and take the inverse Fourier
and Laplace transforms, we would obtain partial differential equations for the closures
∂û0/∂x and∂ûN/∂x that involve high-order mixed partial derivatives. Instead, we may
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write expressions for the closures that do not involve high-order derivatives in time and
space by introducing auxiliary variables. At the left boundary, the closure (3.62) may be
written

E0
∂u0

∂x
= DL E0u0+ ∂

∂y
(F0u0+ h1)

∂h j

∂t
= DL Ej u0+ ∂

∂y
(Fj u0+ h j+1), j = 1, . . . , p− 1 (3.64)

∂hp

∂t
= DL Epu0+ ∂

∂y
Fpu0,

whereh1, . . . , hp are state variables, and the matricesF0, . . . , Fp are defined by

F0 = E1A−1

Fj = Ej A−1B+ Ej+1A−1, j = 1, . . . , p− 1 (3.65)

Fp = Ep A−1B.

The right boundary closure for the pointuN may be treated similarly, withDL replaced
by DR.

If E′(z) is a rational function of degree(m, n), then the number of auxiliary variables
required isp= max{m, n+ 1}. If m= n or m= n+ 2 (required for well-posedness), then
the continuous reflection coefficients for the linearized Euler equations areO(z2p) at the
left boundary andO(z2p+2) at the right boundary (cf. Subsection 2.2.4). For instance, if a
(4,4) Pad´e approximation toγ (z) is used, five state variables are needed at each boundary.
Since the number of pointsN in a computation is typically one or two orders of magnitude
greater than this, the additional computational cost for highly accurate boundary conditions
is often negligible.

Additional details concerning implementation for the linearized Euler equations are avail-
able on our website, athttp://poisson.caltech.edu/cfda.

4. TEST CASES

In this section we give the results of test problems that we have constructed to validate
the numerically nonreflecting boundary conditions presented in the previous section and to
illustrate some subtleties. Specifically, we have tested the discrete boundary conditions of
Subsection 3.4 on the linearized Euler equations, using the continuous boundary conditions
from Subsection 2.2, with several different rational function approximations forγ (z) and
several of the different schemes for boundary closures reported in Table I. In particular,
we have considered the (0,0), (2,0), (2,2), (4,4), and (8,8) Pad´e approximations toγ . As
mentioned in Subsection 2.2.4, the (0,0) approximation (γ ≈ 1) is the one used by Giles
in [7], and the (4,4) approximation is equivalent to the approximation used by Goodrich
and Hagstrom in [9]. Finally, we have implemented a (4,4) rational function approximation
that is chosen to interpolate the functionγ (z) at specific points, so that the resulting bound-
ary condition is perfectly nonreflecting for waves at certain angles to the boundary. This
approximation will be referred to as “(4,4) Interp” in the discussions below. The specific
interpolation points arez= 0, ±1/4, ±1/2, ±3/4, and±1, and were chosen to improve
performance for nearly tangential waves.
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In assessing the effects of the numerical nonreflecting boundary closures, it is useful to
compare our schemes with a typical “ad hoc” boundary closure. In this closure, we attempt
to reproduce what we believe is the standard way of implementing nonreflecting boundary
conditions. That is, we implement (2.17) directly and use a 4th-order explicit closure for
the finite difference in thex-direction whenever necessary.

In all tests, we compute the solution on a two-dimensional domain that is periodic in the
y-direction. The fourth-order Pad´e scheme (a= 3/4,α= 1/4) is used for the spatial deriva-
tives, and 4th-order Runge–Kutta time advancement is used to advance all equations, bound-
ary conditions, and state variables. We have observed that the CFL constraint of the scheme
is unaffected by the boundary conditions or boundary closures, though we have no proof
of this in the general case. The results given below all use a (maximum) CFL number of 1.

4.1. Convection of a Vortex

In the first test, we consider the propagation of a vortex in a uniform stream withU = 1/2.
To avoid the slowly decaying tangential velocity associated with finite circulation in two
dimensions, we chose an initial “sombrero” vorticity distribution that has zero total circu-
lation,

ωz= 1

r

∂

∂r

(
r 2e−(r/α)

2)
,

wherer =
√

x2+ y2, in the computational domain−10α≤ x, y≤ 10α, with 101 grid points
in each direction. In the plots, lengths are given with respect toα, and time is normalized
by α and the sound speed of the base flow.

The continuous boundary conditions are exactly nonreflecting for the vorticity wave,
independent of the choice of rational function approximation. Thus, all reflections will be
spurious numerical waves, so this test is useful in assessing the effectiveness of the boundary
closures from Table I, as compared with the ad hoc 4th-order closure.

Figure 3 shows the RMS value of the vorticity (overx and y) as a function of time.
Near t = 20, the vortex is passing through the right boundary. If there were no spurious

FIG. 3. Initial vortex. The RMS vorticity in the computational domain as a function of time for several
different nonreflecting boundary closures (see Table I).



530 ROWLEY AND COLONIUS

reflections, then the energy within the domain would decrease to zero. However, the exiting
vorticity produces a spurious vorticity wave, which propagates upstream. The strength of
this wave is evident between times 25 and 40 and is drastically reduced as the order of
the boundary closure for the outgoing (smooth) waves (atx= L) is increased. The ad hoc
boundary closure (which uses a fourth-order one-sided difference scheme for closure),
produces the same results as boundary condition bc4 in this regime. However, the spurious
wave eventually reflects at the upstream boundary, and the reflected energy is again greatly
reduced by using the high order nonreflecting boundary closures. The ad hoc boundary
closure shows perfect reflection of this spurious wave at the inflow boundary. Eventually,
the energy stops decreasing for the high order closures, once most of the low-frequency
waves (both physical and spurious) have left the domain and the error is dominated by
waves near the critical frequency (recall from Subsection 3.2.1 that waves at the critical
frequency always suffer pure reflection).

4.2. Propagation of a Pressure Pulse

In the next test, an initially Gaussian distribution of pressure spreads out as a cylindri-
cal acoustic wave in the domain with a uniform velocityU = 1/2. This problem (on both
periodic [9] and nonperiodic domains [23]) has been suggested several times as a test of
the efficacy of boundary conditions, since the numerical solution may be compared to the
exact solution, which may be solved by quadrature. In the present case, we compare with a
reference solution we obtain by performing the computation on a much larger domain, until
that time when it first becomes contaminated by reflections (physical or spurious) from the
boundaries. This procedure is useful for isolating errors associated with the boundary con-
ditions alone, since in the present case these can, for the most accurate boundary conditions,
be smaller than other truncation errors.

The Gaussian pulse is initially given byp= exp−(r/α)2, whereα is the initial width
of the pulse. Again the amplitude is unity, andα is used for the length scale in the nondi-
mensionalization. The grid is identical to the one for the vortex test discussed above. In
Fig. 4, pressure contours of the solution are plotted (top row) at several different times,
and show the propagation of the wave. Since the domain is periodic, waves from images
of the initial condition are evident beginning at timet = 12. By timet = 20, we see that
a significant component of the wave motion corresponds to nearly glancing waves. (Note
that forU = 1/2, waves whose group velocity is tangent to the boundary have wavefronts
at an angle sin−1 U = 30◦ to the horizontal.) As discussed at the end of Section 2, all of the
rational function approximations in the continuous boundary conditions give pure reflection
for waves that are tangent to the boundary.

Figure 4 also shows the error (difference between the computed solution and the reference
solution) for several different boundary closures: the ad hoc boundary closure, and three
nonreflecting closures, bc4.0, bc8, and bc8.0. The closure bc8 uses all coefficients from
scheme bc8 in Table I, and the closures bc4.0 and bc8.0 use coefficients from schemes bc4
and bc8, respectively, everywhere except at the right boundary, where the incoming closure
uses bc0. These closures are discussed in more detail below. All results in Fig. 4 are for a
(4,4) Pad´e approximation forγ (z).

In Fig. 4, att = 8, the ad hoc closure shows a leftgoing spurious wave emanating from the
right boundary as the physical pressure wave leaves the domain. The closure bc4.0 shows
the same reflection, but for the higher order closures bc8 and bc8.0 this reflection is about
two orders of magnitude smaller, too small to show up on the same contour levels. At time



DISCRETELY NONREFLECTING BOUNDARY CONDITIONS 531

FIG. 4. Initial pressure pulse. Contours of the pressure (min−0.1, max 0.1) at several instants in time for the
reference solution; contours of the error in the pressure (min−10−5, max 10−5) using a (4,4) Pad´e approximation
for γ (z), with the 4th-order ad hoc closure, and with discretely nonreflecting closures bc4.0, bc8, and bc8.0.

t = 12, the ad hoc closure shows the sawtooth spurious wave reflecting off the left boundary
as a smooth, rightgoing physical wave. The initial pressure pulse still has not reached the left
boundary. For bc4.0, even though the spurious wave leaving the left boundary has the same
magnitude as it did for the ad hoc closure, the reflection into a physical wave is drastically
reduced, so that by timet = 16 the closure bc4.0 shows no trace of the spurious wave, while
the ad hoc closure has produced a conspicuous reflection, traveling to the right.

Also by this time,t = 16, a different sort of error is beginning to appear at the right
boundary. This is the error from the continuous boundary condition, the error in the (4,4)
Padé approximation forγ (z). It propagates into the domain very slowly, as the only sig-
nificant reflections are for waves whose group velocity is very small. Compared to the
ad hoc closure, this error for closures bc4.0 and bc8.0 is slightly smaller, but for bc8 this
error is noticeably larger. This effect is explained by the discrete reflection coefficients of
Subsection 3.4.1 and is the motivation for the closures bc4.0 and bc8.0, discussed in more
detail below.

By time t = 20, the initial pressure pulse reaches the left boundary and produces another
spurious reflection, apparent in the ad hoc closure and in the closure bc4.0. Again, this
reflection is much smaller for the closures bc8 and bc8.0, but the error at the right boundary
(from the Pad´e approximation) is still larger for bc8. By timet = 24, this error overwhelms
the error from spurious reflections, as the waves from the initial pressure pulse approach
tangential incidence.

Performance of the ad hoc closure.Figure 5 shows the error from the 4th-order ad hoc
closure, the standard way of discretizing nonreflecting boundary conditions, for various
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FIG. 5. Initial pressure pulse. The RMS error as a function of time for several different rational function
approximations forγ (z), all with a 4th-order ad hoc boundary closure.

rational function approximations forγ (z). We plot the RMS value (over the computational
domain) of the error between the numerical solution and the reference solution as a function
of time.

At early timest < 6 when the acoustic wave is leaving the right boundary at nearly normal
incidence, the error in all the boundary conditions is very small, but the error increases as
the wave near the right boundary rotates away from normal incidence. Note that fort < 15,
increasing the accuracy of the rational function approximation beyond a certain point does
not further decrease the error. This error, starting at aboutt = 8, is the spurious wave
reflected off the right boundary (clearly shown in Fig. 4), and the ad hoc closure is helpless
to decrease this reflection, no matter how accurate the rational function approximation. For
later times, of course, the more accurate boundary conditions perform better, as subsequent
physical reflections are smaller, but the adverse effects of the spurious waves remain. If all
four boundaries were nonreflecting, note that the wave would have left the right boundary
by time t = 12 (cf. Fig. 4) so the error would be dominated by the spurious reflections.
Thus, when an ad hoc closure is used, often there is little point in increasing the order of
the rational function approximation beyond a certain point, as the error may be dominated
by spurious reflections.

Performance of the discretely nonreflecting closures.In Fig. 6, we again plot the error
between the numerical solution and the reference solution, but for several different numerical
boundary closures from Table I, using both (0,0) and (4,4) Pad´e approximations forγ (z).
The closure bc8.0 is the same as shown in Fig. 4, described above.

Consider first the (4,4) Pad´e scheme (solid line), where the continuous reflection co-
efficients are small. At early times, the benefit of using the higher-order closures for the
outgoing waves is evident. The initial “bump” in the curves centered aroundt = 8 is the
spurious wave reflecting from the right boundary, as noted above. The amplitude of this
error is decreased as the order of accuracy of the closure is increased. That is, schemes
bc8 and bc8.0 give the best results, and using scheme bc2 gives the worst results, with the
4th-order ad hoc closure lying in between.
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FIG. 6. Initial pressure pulse. The RMS error as a function of time for several boundary closures with a
(0,0) Pad´e approximation forγ (z), - - -; and a (4,4) Pad´e approximation, —.

For longer times, though, the difference between schemes bc8 and bc8.0 becomes ap-
parent. The closure bc8.0 consistently performs best of all. For bc8, however, around time
t = 10, the error starts to grow, soon exceeds the error from the ad hoc closure, and eventually
performs worst of all!

This same effect is seen even more drastically when the (0,0) Pad´e scheme is used (dashed
line). Here, at all times, scheme bc8.0 performs the best, but scheme bc8 performs worst of
all.

A closer look at reflection coefficients.This surprising result is explained by the dis-
crete reflection coefficients given by Eqs. (3.58) and (3.59). The numerically nonreflecting
closures are designed to minimize the single-mode reflection coefficientsρo andρ i . More
precisely,ρo decreases as the order of the do operator increases, andρ i decreases as the
order of the di operator increases (see Fig. 2). These single-mode reflection coefficients are
the dominant terms in the matrices of discrete reflection coefficients (3.58) and (3.59) as
long as thecontinuousreflection coefficientsR1 andR2 are small. However, ifR1 andR2

are not small, the off-diagonal terms in these matrices become important.
For the closures given in Table I, some of these reflection coefficientsincreaseas the order

of the closures increases. In particular, the magnitude ofc(φ2)/c(φ3) increases as the order
of the operator di increases, and the magnitude ofb(φ2)/b(φ3) increases as the order of the
operator do increases. At the left boundary, the termb(φ2)/b(φ3)multiplies the continuous
reflection coefficientR2 in the reflection coefficient from a leftgoing spurious acoustic wave
to a rightgoing spurious acoustic wave, so increasing the order of the outgoing closure do

will increase this reflection. At the right boundary, the termc(φ2)/c(φ3) multiplies the
continuous reflection coefficientR2 in the reflection coefficient from a rightgoing acoustic
wave to a leftgoing acoustic wave. Thus, increasing the order of the closures will increase
these two reflections. This effect is evident whenever the rational function approximation
breaks down and the continuous reflection coefficientR2 is not small: in our case, this
happens when a low-order approximation toγ (z) is used, or for long times, when waves
near the boundary are nearly tangent to the boundary.
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FIG. 7. Initial pressure pulse. The RMS error as a function of time for several boundary closures with a
(4,4) Pad´e approximation forγ (z), - - -; and an (8,8) Pad´e approximation, —.

Understanding these tradeoffs, we may carefully choose which closure to use at each
boundary to produce the most accurate boundary condition for a specific problem. For the
present test case, if initially no spurious waves are present (i.e., the initial condition is well
resolved) then theprimary reflections will be physical waves reflecting as spurious waves.
At the right boundary, to make the primary reflection coefficients as small as possible, we
should makeρo andc(φ2)/c(φ3) as small as possible. To makeρo small, we use bc8 for the
operator do, and to makec(φ2)/c(φ3)small, we use bc0 for the operator di . We choose bc0 for
the operator di at the expense of increasing reflections of spurious waves at the right boundary
(increasingρ i ), but these reflections are less important, as they will besecondaryreflections.

At the left boundary, to make the primary reflection coefficients small we should make
ρo as small as possible by using bc8 for do, and alsoc(φ3)/c(φ2) small by using bc8 for di .
The resulting boundary condition is labeled bc8.0 in the previous figures. As we expect,
this carefully constructed boundary condition produces the smallest error.

High-order rational functions and high-order closures.Figure 7 shows the error for
several closures, when a high order (8,8) Pad´e approximation is used (solid line), compared
to a (4,4) Pad´e approximation (dashed line).

For early times (t < 20), before the waves are close to tangential incidence, increasing
the rational function approximation improves the error little, if at all, for the lower order
closures (the ad hoc closure and bc2) because the error is dominated by spurious waves.
For the higher order closures bc8 and bc8.0, however, increasing the rational function
approximation significantly improves the error, since here the spurious reflections are small
and the continuous reflection coefficients are important.

Finally, we add that many physically realistic acoustic fields will not involve waves near
glancing incidence, and in those cases uniformly more accurate results are obtained as the
order of the nonreflecting boundary closure is increased.

Comparison with other truncation errors.We mentioned earlier that the boundary errors
can be smaller than other truncation errors. This is especially true for the reflections of spu-
rious waves, which are reduced as some power ofh ash→ 0. For nearly tangential waves,
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where the boundary error comes from a breakdown of the rational function approximation,
the error is much larger than other truncation errors, and does not scale withh.

For the 4th-order ad hoc boundary condition, for early times (t < 20) the boundary errors
shown in Fig. 4 are smaller than the other truncation errors (although of the same order).
One might then question why we should be concerned with such small errors. Although
the spurious reflections are smaller than the other truncation errors, they are much more
insidious. The other truncation errors consist entirely of phase and amplitude error, and in a
non-periodic problem, they will eventually leave the domain, while the boundary errors will
reflect back and forth and persist indefinitely. Furthermore, in a sensitive computation such
as an aeroacoustic computation of a flow with self-sustained oscillations, these reflections
may be amplified and cause the flow to oscillate at non-physical frequencies, while amplitude
and phase errors are more benign and do not cause such qualitatively different behavior.

5. CONCLUSIONS

We have developed a framework for constructing local, strongly well-posed boundary
conditions for finite-difference solutions of linear hyperbolic systems. These boundary
conditions take explicit account of the dispersive character of the finite-difference approx-
imation and are designed to minimize the reflection of spurious waves at the boundaries.
As such, they are dependent on the particular finite-difference scheme, and we have used
a 3-point Pad´e centered-difference scheme to illustrate the analysis. The analysis leads to
boundary closures to the finite-difference scheme, and different closures need to be applied
to incoming and outgoing waves at each boundary.

When these discrete boundary conditions are applied to the Euler equations, linearized
about a subsonic flow, the local boundary conditions rely on a rational function approxima-
tion to the function

√
1− z2, which is obtained when waves are decomposed into rightgoing

and leftgoing modes in Fourier space. As in previous boundary conditions [27] for the simple
wave equation, we have shown that several classes of rational function approximations lead
to stable, well-posed boundary conditions. The scheme can thus be extended to arbitrarily
high order of accuracy.

Numerical experiments using these boundary conditions for the linearized Euler equations
verify that usually, high-order numerical closures produce smaller reflections than low-order
closures or ad hoc closures. For vorticity waves leaving the boundary, for instance, higher
order closures always work better. However, there can exist situations where the higher-order
boundary closures can amplify reflections due to approximations in the continuous boundary
conditions. For the linearized Euler equations, for instance, using a high-order closure for the
incoming operator di at the right boundary amplifies errors from the continuous boundary
conditions. Thus for the linearized Euler equations, one should generally use the closure
bc0 from Table I for the incoming operator at the right boundary, and high-order closures
everywhere else.

To summarize the results of the numerical experiments, if a low-order numerical closure
is used, increasing the order of the approximation toγ (z) beyond a certain point does not
improve results, because the error will be dominated by spurious waves. Conversely, if a low-
order approximation forγ (z) is used, then increasing the order of the discrete closure beyond
a certain point does not improve results, because the error will be dominated by reflections
of physical waves. High-order closures and high-order rational function approximations are
used most effectively when used together.
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We note that the spurious numerical reflections addressed by these boundary conditions
may also be reduced by adding small amounts of artificial viscosity, or numerical smoothing,
as one reviewer pointed out. However, artificial viscosity, when added in quantities sufficient
to damp the spurious waves, will also have a significant effect on the smooth waves with
relatively few (5–10) points per wavelength, and thereby degrade the accuracy of the high-
order schemes. The boundary conditions presented in this paper effectively reduce the
spurious waves without degrading the accuracy of the method.

Though we have assumed in the analysis that we are dealing with constant coefficient
linear equations, this is a necessary restriction only in a local region near the computational
boundary. Thus the present boundary conditions can be used in computations where the
far-field is governed by the linearized Euler equations, but more complicated (nonlinear or
non-constant coefficient) equations are needed for an interior region. Moreover, they can
be used on non-uniform meshes, provided that the mesh becomes approximately uniform
in the vicinity of the boundary.

In the future, we intend to apply these boundary conditions to more complicated prob-
lems. Generalizing these boundary conditions to a single boundary in three dimensions
is straightforward and including systems with uniformly characteristic boundary, such as
Maxwell’s equations, will be addressed in a forthcoming paper. A more complicated issue
is how to deal with corners in two dimensions, and corners and edges in three dimensions.
In addition, there is an urgent need for accurate boundary conditions for nonlinear equations
where the nonlinearities near the boundary cannot be ignored (as in a turbulent outflow).
We hope that having provided a general framework, whereinall the errors due to artificial
boundary conditionshave been analyzed, will aid in the development of techniques for
more complex situations.

APPENDIX

We claim that if a matrixN(iω, κ) is defined by

N(iω, κ)= κ2(aI + αiωh A)+ κ(iωh A)− (aI − αiωh A)

andκ± satisfies

(κ±)2(a+ αiωhλ)+ κ±iωhλ− (a− αiωhλ)= 0

then

N(iω, κ±)u= 0⇔ Au= λu.

Proof. (⇐) AssumeAu= λu. Then

N(iω, κ±)u = [(κ±)2(aI + αiωh A)+ κ±(iωh A)− (aI − αiωh A)]u

= [(κ±)2(a+ αiωhλ)+ κ±(iωhλ)− (a− αiωhλ)]u

= 0u

by definition ofκ±.
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(⇒) If N(iω, κ±)u= 0, then

[(κ±)2(aI + αiωh A)+ κ±(iωh A)− (aI − αiωh A)]u= 0. (A.1)

By definition ofκ±, for anyu we have

[(κ±)2(a+ αiωhλ)+ κ±(iωhλ)− (a− αiωhλ)]u= 0. (A.2)

Subtracting (A.2) from (A.1) gives

[(κ±)2αiωh(A− λI )+ κ±iωh(A− λI )+ αiωh(A− λI )]u= 0

⇔ [(κ±)2α + κ± + α](A− λI )u= 0.

The coefficient in brackets is never zero if the implicit finite-difference scheme is non-
singular, so we haveAu= λu, which was to be shown.
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