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Many compressible flow and aeroacoustic computations rely on accurate nonre-
flecting or radiation boundary conditions. When the equations and boundary con-
ditions are discretized using a finite-difference scheme, the dispersive nature of the
discretized equations can lead to spurious numerical reflections not seen in the contin-
uous boundary value problem. Here we construct discretely nonreflecting boundary
conditions, which account for the particular finite-difference scheme used, and are de-
signed to minimize these spurious numerical reflections. Stable boundary conditions
that are local and nonreflecting to arbitrarily high order of accuracy are obtained, and
test cases are presented for the linearized Euler equations. For the cases presented,
reflections for a pressure pulse leaving the boundary are reduced by up to two orders
of magnitude over typical ad hoc closures, and for a vorticity pulse, reflections are
reduced by up to four orders of magnitudeg 2000 Academic Press
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1. INTRODUCTION

It is well known that finite-difference models of nondispersive (hyperbolic) partial dif-
ferential equations are themselves dispersive (see, e.g., [3, 26, 29]). This dispersive na
of finite-difference schemes has profound implications for the construction of accurate &
stable artificial boundary conditions, as it can lead to spurious numerical reflections, wh
can be alarge source of error for sensitive computations. For example, repeated spuriou:
merical reflections have been found to cause physically unrealistic self-forcing of the flo
in computations of convectively unstable mixing layers [4, 16]. Nevertheless, dispersi
has been largely ignored in practical implementation of artificial boundary conditions f
the Euler equations of gas dynamics [5, 7, 25]. While boundary conditions that account
the dispersive effects of discretization have been developed in some special cases [3,
there is no general formulation for linear hyperbolic systems such as the linearized EuU
equations.

The goal of this paper is to present a generalized framework that we have develoj
for constructingnumerically(or discretely nonreflecting boundary conditionghich are
designed to reduce reflections of spurious numerical waves. We present the method f
class of linear hyperbolic systems, with specific application to the linearized Euler eqt
tions of gas dynamics. The resulting boundary conditions are well posed, can be exten
to arbitrarily high order-of-accuracy, and are naturally written as closures for derivative
normal to the boundary, so for implicit finite-difference schemes no other closure is nec
sary. Both physical reflections, due to local approximations in the dispersion relation, a
spurious numerical reflections, due to dispersive effects at finite resolution, are addres
in this approach. There are some tradeoffs that depend on the specific problem ur
consideration—for the linearized Euler equations, for instance, using high-order numeri
closures at the right boundary can increase the error from approximations in the disg
sion relation—Dbut in general we show that the performance of the boundary conditions
excellent.

This paper is organized as follows. In Section 2, we describe our procedure for cc
structing continuous (i.e., non-discretized) nonreflecting boundary conditions for line
hyperbolic systems. This analysis builds on the work of Engquist and Majda [5, 6], at
more recent work by Giles [7] and Goodrich and Hagstrom [8, 9, 12]. We present the ir
portant parts of the analysis in a framework that is readily extended to the discrete case.
also discuss local approximations to the exact (nonlocal) boundary conditions, and dem
strate how a powerful theorem of Trefethen and Halpern [27] may be used to determ
well-posedness of the approximate boundary conditions.

These continuous boundary conditions give very accurate results when discretized |
typical ad hoc way—i.e., when biased or one-sided finite-difference approximations &
used where necessary for derivatives at or near the boundary. However, more robust
accurate discrete boundary conditions are derived in Section 3, by explicitly considering
dispersive nature of the finite-difference discretization at the outset. We first show how
distinguish physical solutions, which resemble solutions of the non-discretized equatio
from spurious solutions, which behave qualitatively differently, and are merely artifacts |
the numerical scheme used. This analysis builds on earlier work by Vichnevetsky [29]. \
then construct boundary conditions that digcretelynonreflecting, in the sense that they
prevent not only reflection of physical waves, but also reflection of spurious waves fro
a boundary. This approach was used by Colonius [3] to derive numerically nonreflecti



502 ROWLEY AND COLONIUS

boundary conditions for one-dimensional systems, and here we show how to extend
analysis to the multidimensional case. The approach is, of necessity, restricted to partict
finite-difference schemes, and we choose theeFlaide-point central difference to illustrate
the analysis. We conclude by showing the results of several test cases that illustrate
benefits and limitations of these schemes.

2. CONTINUOUS NONREFLECTING BOUNDARY CONDITIONS

Several distinct approaches have been used in deriving boundary conditions for lin
hyperbolic systems. We briefly review the basic ideas—recent reviews [20, 22, 28] gi
further references to the relevant literature.

The first method involves so-called radiation boundary conditions [1], which are bast
on asymptotic expansions of the solution produced by a finite source region. Very accur
local and nonlocal boundary conditions based on this expansion have been developec
the wave equation (e.g., [10]), but radiation techniques for the linearized Euler equatic
[22, 23] are more limited. In a comparison [15] of many different boundary conditions
the accuracy of these conditions was found to be roughly comparable to Giles’ bound:
conditions, discussed below.

A second technique uses a perfectly matched layer to absorb waves leaving the corr
tational domain. Such a technique was proposed by Hu [17], who reports problems w
numerical instability, and further analysis and tests [9, 13] demonstrate persistent proble
with well-posedness.

The third technique goes back to the early work of Engquist and Majda [5, 6] and involv
the decomposition of the solution into Fourier/Laplace modes. Exact boundary conditio
are then constructed by eliminating those modes that have a group velocity directed into
computational domain. The exact conditions are nonlocal in space and time—that s, they
not expressed as differential equations, but as integrals over all of space and time—but I¢
approximations to these can be constructed. These involve rational function approximati
to /1 — Z2, wherez is the (spatial) wavenumber in the direction tangent to the boundar
divided by the frequency of the wave. Note that multiplication of a variable/thy- z2 in
Fourier space corresponds to a nonlocal operation in real space. The/fernz? arises
when the dispersion relation for acoustic waves is split into incoming and outgoing mod
at a boundary. For the simple wave equation, Trefethen and Halpern have shown in [.
that a certain class of rational function approximations leads to stable boundary conditio
This class doersotinclude Taylor series expansions abatt O higher than second-order.
However, stable Pa&dapproximations can be constructed whigtroducethe Taylor series
to arbitrarily high order. The Padpproximations are exact for normal waves and give the
highest error for waves whose group velocity is tangent to the boundary.

Unfortunately, the extension of the results for the simple wave equation to the lineariz
Euler equations has not been straightforward. Giles [7] found that the second-order Tay
series expansions of the modified dispersion relation led to ill-posed boundary conditio
By an ad hoc procedure, Giles modified these conditions to obtain boundary conditions t
are stable, but have limited accuracy.

More recently, Goodrich and Hagstrom [9] described inflow and outflow boundary cor
ditions for the linearized Euler equations that are well posed for arbitrarily high accurac
Hagstrom [12] has also developed a series of nonlocal boundary conditions and a Io
approximation that is equivalent to the Raafiproximation ta/1 — z2. Using a somewhat
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different approach, described in more detail in Subsection 2.2.3, we have derived a sim
hierarchy. Interestingly, the proof of well-posedness for our boundary conditions leads
conditions on rational function approximations to the square root that are identical to thc
derived for the simple wave equation by Trefethen and Halpern [27]. This opens the po:s
bility of a wide variety of boundary conditions that may be specifically tailored to the pro
blem at hand, e.g., to exactly eliminate reflections of waves at a specified angle to
boundary. We give an example of such a scheme in Section 4.

2.1. General Theory

Consider the system
Uy + Aux + Buy, =0 (2.2)

for0O<x <L,yeR,whereAandB aren x n matrices and is a vector witm components.
We will assume that the system (2.1) is strongly hyperbolic, in the sense of [11], and \
note that strictly hyperbolic and symmetric hyperbolic systems fall into this category. In th
paper, we will further assume thats invertible, as is the case for the Euler equations of ga:
dynamics when they are linearized about a nonzero uniform mean flow. This assumpt
does not hold for systems with characteristic boundary, such as Maxwell’s equations,
we believe it will be possible to extend the techniques presented here to include many s
systems (see Majda and Osher [21]).

In a traditional normal mode analysis, solutions of (2.1) are made mgifferent modes,
which propagate at different speeds. A crucial step in developing boundary conditio
for (2.1) is determining the direction of propagation of each mode, and distinguishir
which modes are “outgoing” and which are “incoming” at the boundary.

Splitting into rightgoing and leftgoing modesif we take a Fourier transform ip, with
dual variablek, and a Laplace transform tnwith dual variables, the system becomes

Ox = —A (sl +ikB)qQ. (2.2)
If we definez = ik /s, we may write
Uy = —sM(2)0, (2.3)

whereM (z) = A-%(1 4 zB). We wish to separat@ into modes that are “rightgoing” and
modes that are “leftgoing.” Each of these modes corresponds to an eigenvalu@)of
A well known result in the theory of hyperbolic systems is that is the number of
positive eigenvalues o4, then solutions of (2.1) are made upl dfightgoing” modes and
(n —1) “leftgoing” modes. For wavelike solutions, “rightgoing” and “leftgoing” solutions
correspond to waves with energy traveling in the and—x directions, respectively. Not
all solutions to (2.1) are waves, so for non-propagating solutions, the terms “rightgoin
and “leftgoing” refer to the algebraic labeling from the theory of well-posedness (see [1<
where, for instance, “rightgoing” modes refer to all modes which must be specified at t
left boundary in order to obtain a well-posed problem.

Whenz =0, M(z) = A~1, so eigenvalues d¥l (0) are real and nonzero. Accordingly, the
| rightgoing modes of (2.1) correspond to the eigenvalué$ @ that are positive for=0,
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and the(n — 1)) leftgoing modes correspond to the eigenvalueligf) that are negative for
z=0.
If the matrix M (z) is diagonalizablé,then there exists a matri®(z) which satisfies

Lo
QMQl=A = (AO A,,>, (2.9)

where A(z) is the matrix of eigenvalues df1(z), arranged so thad' is anl x| ma-
trix that is positive-definite foz = 0, corresponding to rightgoing solutions, and is an
(n—1) x (n —1) matrix that is negative-definite fa= 0, corresponding to leftgoing solu-
tions. (Henceforth, all matrices are functionszafinless otherwise noted, so we drop the
explicit zdependence.)

Multiplying by Q, (2.3) becomes

Qly = —s(QMQ™HQn, e, fy = —sAf, (2.5)

where f = Q0 are the characteristic coordinates. Now we may partition (2.5) into

)5 ()

where thef' are now purely rightgoing modes and the are leftgoing modes.

Exact nonreflecting boundary condition€Once this distinction has been made, the
correct nonreflecting boundary conditions follow immediately. Since there are no incomir
modes at a nonreflecting boundary, at the left boungasy there should be no rightgoing
modes, so an exact nonreflecting boundary condition is

fl'=0, atx=0.

At the right boundary, there should be no leftgoing modes, so an exact nonreflecting bou
ary condition is

f' =0, atx=L.

To implement these boundary conditions, we must transform back to the original variab
0, and then take the inverse Fourier and Laplace transforms. It is convenient to patition

in the same manner ds
QI
Q- (Q,, ) ,

2 All we really require is that th beblockdiagonalizable in the form (2.4), such that rightgoing and leftgoing
solutions are decoupled. Some theorems given in [11, 14] guarantee that for strongly hyperbolic systems,
matrix M (ik/s) is always block diagonalizable for Re- 0, and always diagonalizable for wavelike solutions
with Res =0, except when waves are tangent to the boundary. For tangential waves, thevhatniot block
diagonalizable in the manner of (2.4), so in deriving the nonreflecting boundary conditions, we exclude this ca
This exclusion does not create a problem, because energy from tangential waves stays at the boundary and
not propagate into the domain, so it is only necessary to check that the boundary conditions are well posec
tangential waves. The family of boundary conditions presented in Subsection 2.2 satisfies the uniform Kre
condition (see, e.g., Higdon [14] and references therein) and is thus strongly well-posed.
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whereQ' is a rectangular matrix of dimensibrx n, andQ" has dimensiotin —1) x n, so
that the boundary conditions become

Q=0 atx=0
Q'a=0, atx=L,

which may be implemented by taking the inverse Fourier and Laplace transforms.

Implementation and approximationTwo difficulties arise in implementing the above
boundary conditions. First, since the boundary condition is expressed in Fourier—Lapl:
(x, ik, s) space, and in many cases (e.g., the linearized Euler equations) the matrix
left eigenvectorg)(z) contains non-rational functions o%/s (e.g., square roots), when
we transform back to physicék, y, t) space, the boundary condition will be nonlocal in
both space and time. From a computational perspective, we would prefer a local bound
condition, which may be obtained by approximating non-rational elemen€@(of by
rational functions ot (e.g., Pad approximations).

A second difficulty is that when approximations are introduced, the resulting bounda
conditions may be ill posed. The theory of well-posedness is discussed in detail in [11, :
18], and here we summarize some of the important points.

Well-posedness and reflection coefficientlell-posedness may be viewed as a solv-
ability condition: we must be able to solve for the incoming modes uniquely in terms of tf
outgoing modes. To investigate this approach, consider the equation

Uy = —sM(2)0
for 0 < x < L, with boundary conditions

E'G =0, atx =0
E'0=0  atx=L,

whereE' is anl x n matrix, E" is an(n —I) x n matrix, M (2) is given by (2.3), andlis the
number of rightgoing modes (i.e., positive eigenvaluedet = 0)). Let T(2) = Q 1(2)
denote the matrix of right eigenvectorsidf(z) and write

T = (TI T“) ;

whereT! has dimensiom x | andT" has dimensiom x (n —1). In terms of the character-
istic variablef = T (0, the boundary conditions become

E'Tf =0, atx =0
E'"Tf=0  atx=L.

At x =0, the boundary condition may then be written

f!
Eﬁ'ﬂn(w>=q ie,C'f'+D'f!' =0,



506 ROWLEY AND COLONIUS

whereC':= E'T' is anl x| matrix, andD' := E'T" is anl x (n — |) matrix. Recall that
the f' modes are purely rightgoing and tfi& modes are purely leftgoing, so here we may
solve for the incoming (rightgoing) modes as long2ss nonsingular. In that case,

fI:_(CI)—lDIfII =R

where thd x (n — ) matrix R' is the matrix of reflection coefficients.
Similarly, at the right boundary the boundary condition may be written

D|| fI+C” f” :0’

whereC" := E"T" has dimensionn — 1) x (n — 1), and D" := E"T' has dimension
(n — ) x1. Here we may solve for the incoming (leftgoing) mode<If is nonsingu-
lar, in which case

fl— _ (Cu)—l D"f = R'f',

whereR!" is the(n — |) x | matrix of reflection coefficients at the right boundary.

For a pair of boundary conditions to be perfectly nonreflecting, the matRtasd R"
must be identically zero, so the matrid®5andD" must be zero. Taking' andE" equal
to the left eigenvector®' and Q" not only makes thé®"!" matrices zero, but also makes
theC''" matrices diagonal. Thus, in order to construct a perfectly nonreflecting bounda
condition it issufficientto use the left eigenvectors (as long as the boundary condition i
well posed), but it is not necessary. Equivalently, it is not necessary that the matrix

- (32)

be diagonal; it is only necessary that ithleck diagonal.

In order to solve for the incoming modes in terms of the outgoing modes, we required
the right boundary that the matr®' be nonsingular, and at the left boundary t@dtbe
nonsingular. This requirement is equivalent to the uniform Kreiss condition [11, 14, 18
which is a sufficient condition for well-posedness, but it is more strict than necessary.
discussed in [14], for well-posedness all we really require is that the reflection coefficie
matricesR' andR" be bounded for alt € C, a requirement that is equivalent to the well-
posedness criteria described by Giles [7].

2.2. Application to Euler Equations

In this section we derive continuous nonreflecting boundary conditions for the Eul
equations of gas dynamics. The standard procedure, as described in the previous sectic
to construct the matri¥ (z), determine which modes are incoming by looking at the eigen-
values ofM (0), and then to write down the appropriate nonreflecting boundary conditio
from the left eigenvectors d¥l that correspond to incoming modes.

The linearized Euler equations are a particularly difficult example, because the €
act boundary conditions are nonlocal, and all local boundary conditions obtained by ¢
proximating the left eigenvectors by rational functions are ill posed, as we discuss
Subsection 2.2.3.
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2.2.1. Equations of motion.The isentropic Euler equations of gas dynamics, linearizec
about a uniform base flow, may be written

U +Uuy +Vuy+ px =0
v +Uv+Voy+py=0 (2.6)
Pt +Upx +Vpy +Ux +vy =0,

whereU andV are the Mach numbers of the uniform base flow inxhendy directions.
Here, the velocitiest and v are normalized with respect to the (constant) sound speec
and the pressurp is normalized by the ambient density times the sound speed square
Lengths are made dimensionless with an (as yet unspecified) lengthd time is made
dimensionless with. and the sound speed. In matrix form, with= (u, v, p)T, we have

wt + wa + éwy:O,

where
u o0 1 V 0 O
A=|l0 U 0|, B=[0 V 1
1 0 U 0 1V

so the system (2.6) is symmetric hyperbolic, and hence strongly hyperbolic. It is conveni
to diagonalize the matriXA by transforming the equations to the variabdes (v, u+ p,
u — p). The system becomes

o + Aok + Bay =0, (2.7
where
u o 0 Vo 1/2 -1/2
A= 0 U+1 0 , B=| 1 vV 0
0 0 uU-1 -1 0 \Y;

Here we assume QU < 1 (subsonic flow), so the matriA is invertible, and we may
construct the matrixM (z) = A~1(I + zB) as in the previous section. Taking a Fourier
transform iny and a Laplace transform in time, wittk, s) the dual variables dfy, t), the
equations of motion become

Gx=—SM@4, (2.8)
where§=s+ ikV, z=ik/§, and
1z =z
U 2U 2U
M@= | %1 ULH 0 (2.9)
=z 0 L

C
.
C
|
[u
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2.2.2. Exact nonlocal boundary conditionsThe direction of propagation of the modes
is determined from the eigenvaluesMf(z), which are

1
)\.]_ZU
U-—vy
Ao —
2= y2z_-1
U+y
Ay = —
3 Uz—l’

wherey (z2) = /1 — 22(1 — U2), and where/- denotes the standard branch of the square
root. Since O<U < 1, the first two modes are rightgoing;( 1, > 0 for z=0), and the
third mode is leftgoingXs < 0 for z=0).

We stated earlier that approximate boundary conditions give the highest error for way
that are tangent to the boundary. Let us identify these waves for the linearized Euler eq
tions. Thex-components of the group velocities of the modes are

C, = U

o uz-1
T uU-1y
o uz—1
T U411y

Waves are tangent to the boundary whenttemponent of the group velocity is zero, so
the last two modes (the acoustic waves) are tangent to the boundarywwheén

The boundary conditions are found from the left eigenvectors1¢f), which are the
rows of the matrix

2 zU+1 zU -1

QI
Q@ﬁ=(7>= —2zU 14y 1-y (2.10)
Q —2zU 1-y 1+y

partitioned intoQ' and Q" as shown. At the left boundarx & 0), the appropriate nonre-
flecting boundary condition is then

oo, m”( 2 zZU4+1 au—n>

—2zU 14y 1—y

and at the right boundaryx & L), the nonreflecting boundary condition is

o)
Q"'4=0, ie.,(—2zU 1—y 1+py)|0+p | =o0. (2.12)
-p

[

These conditions are exact, but they are nonlocal, sinég not a rational function of
z. Furthermore, whery is approximated by a rational function, the “inflow” boundary
condition (2.11) is always ill posed, as we will show in the next section.
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2.2.3. Well-posed local approximationsBefore discussing local approximations to the
above boundary conditions, and in particular their well-posedness, we require some be
ground on approximation by rational functions. In order to develop well-posed one-w:
boundary conditions for the scalar wave equation, Trefethen and Halpern [27] proved s
eral theorems about rational approximations/df — z2. In particular, they proved that if
ro(2) is a rational function that approximate&l — z2 for ze [—1, 1], then as long as(2)
interpolates,/1 — z2 at sufficiently many points in the interval-1, 1), the equation

ro(z2)=—v1-22 (2.13)

has no solutions. The existence of solutions of (2.13) is directly relevant in showing we
posedness of approximate boundary conditions. Conveniently, the interpolation crite
mentioned are met for many common categories of approximations. In particujgz) ifls

of degree(m, n) (i.e., the numerator and denominator are polynomials of degreedn,
respectively), andy(2) is a Pa@, Chebyshev, or least-squares approximation to the squa
root, the interpolation criteria are met as longas-n orm=n + 2.

Now, to obtain local approximations to the exact nonreflecting boundary conditior
derived in the previous section, we replacg) = /1 — z2(1 — U?) in the boundary con-
ditions (2.11) and (2.12) by a rational functio(z) =rq(z+v/1 — U2), whererg meets the in-
terpolation criteria mentioned above. To find the reflection coefficients, as in Subsection Z
we require the matrix of right eigenvectorsdf(z), given by

1 -2 -2

14y 1-y

T@=(T"™) =|2Y 51| U5
1— 1

U 55 | o4

partitioned as shown. Computing the matrices of reflection coefficients as described
Subsection 2.1, at the right boundary we find

Rl — _ (QuTll)—l QT = (O Rz),

where

_(y—=—nN@yu-1

= = = 2.14
2 (y +0(yuU+1) (2.14)

Now, for well-posedness, we requif® be bounded. Clearly, the second factor in the
denominator is never zero, since wheneyes real,y is positive. Additionally, the first
factor in the denominator is never zero, as guaranteed by the theorem of Trefethen
Halpern. Thus the right boundary condition is well posed. Note, however, that for wav
tangent to the boundary (= 0), the reflection coefficient is always unity, independent of
the rational function approximatian

At the left boundary, the reflection coefficient matrix is

teomyior= (),
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where

_ -DeU+D
(y+n(yuU -1

Here, as before, the first factor in the denominator is never zero, but the second factor is z
whenz? = —1/U?2. Since the reflection coefficient is unbounded for this valug tie left
boundary condition is ill posed, regardless of how we choose the approxinnazprnio
obtain a well-posed approximate boundary condition, we must modify the exact bounds
condition given by (2.11).

(2.15)

The modified inflow boundary conditionRecall that the only requirement for aboundary
conditionE'q = 0to be perfectly nonreflecting is th&tT" = 0, or physically, that all purely
outgoing modes identically satisfy the boundary condition. Here, at the left boundary the
is only one outgoing mode—the matfi¥' is a single column vector, which we denete—
so all we require is that the rows Bf be orthogonal tes. The matrixQ of left eigenvectors
provides two such rows, given by (2.11), but these row vectors are linearly dependent
22 =-1/U?2, and so the resulting boundary condition is ill posed. We need another way
come up with row vectors orthogonal ¢g.

One way, proposed by Goodrich and Hagstrom [8], is to consider the niAtrixasl .

By definition ofes,

(M —23l)es=0

so each row oM — A3l is a row vector orthogonal tes. For our case,

yU+1 z -z
U(1-U?) 2U 2U
_ _ z y+1
M—isl=| & £L o |. (2.16)
z y—1
1-U 0 1-U?

Goodrich and Hagstrom take the second row of this matrix, scaled by the constaunt,1
in place of the second row @', to give the pair of boundary conditions

E'g = 0, atx = 0

2.17
E'g=0  atx =1L, @17)
where
E'—( 2 zU +1) z(U—1))
S \z(1-U)  1+4r 0 (2.18)

E'"=(-2zU 1—r 1+4r),

where again we have replacedwith its rational function approximation. The right
boundary condition is the same as before, but now the reflection coefficient at the I
boundary is

_r=nr-J
(y+n+D

which has no poles, and so this boundary condition is well posed. Here again, note t
waves tangent to the boundary are perfectly reflected, regardless of the approximation

Ry = (2.19)
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Other approximations. It is interesting to take an arbitrary linear combination of rows
of M — 3l in place of the second row @'. Denoting the three rows dfl — Azl asx,
X2, andxz, respectively (where the; are row vectors), and choosing a linear combination
of themay X, + axXo + agXs in place of the second row @ gives the reflection coefficient

_(V—f)< az+a(y -1H/A+U)+a(y +1/A-U)
y+r/\—aiz+a(y +1)/1+U) +a(y - 1/(1-U)

Ry = ) (2.20)

From this expression, several points are evident. First, using the third row efizl
(i.e., takinga; =a, =0, ag=1) gives an ill-posed boundary condition, because of the
factor (y — 1) in the denominator. Second, using the first raw=€ 1, a, = ag=0) gives

a reflection coefficienty —r)/(y + r), which is greater in magnitude than (2.19) for all
waves. Thus, the second row is the most sensible choice. Itis possible to make the reflec
coefficient even smaller than (2.19), by choosing

a =20
a=0r+bHU+1
aa=0r-HU-1

in which case the reflection coefficient (2.20) becomes

Re——(7=0Y 221
1__()/+r> (e.21)

which approaches zero even faster than (2.19)-as y. However, the corresponding row
of the matrixE'

2 a2
(22 (rltt) —(rHt)) (2.22)

containsr? terms. Thus, while this boundary condition is more accurate than the or
given by (2.17) and (2.18), it also requires more computational effort. In fact, for the sar
computational effort we may double the degree of the rational function approxinration
in (2.18) and obtain an even better reflection coefficient. Thus, in what follows we consid
the boundary condition given by (2.17) and (2.18), but note that it may be possible to obt:
better reflection coefficients for other choicesagfa,, andas.

2.2.4. Comparison with previous boundary condition&oodrich and Hagstrom [8]
implement the boundary condition given in the previous section using a particular apprc
imation toy. Their local approximation tg is identical to the (4,4) Padapproximation,
though this is not immediately obvious, because the approximation was derived usin
different approach (approximating a pseudo-differential operator via quadrature) and is
pressed in [12] in terms of partial fractions. We note that the earlier boundary conditio
described by Hagstrom in [12] are actually ill posed at the inflow since these use the n
trix of left eigenvectorsQ, from (2.10). Thus his nonlocal approximationsyta(which
have excellent bounds on long-time errors) should presumably be applied in conjunct
with (2.17).

Itis of interest to compare the present results with the boundary conditions of Giles [
which have been widely used in compressible flow and aeroacoustic calculations.
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Giles [7] provides two boundary conditions. His standard boundary conditions use the |
eigenvectors, with the approximatipn~ 1. Thus, the standard inflow boundary condition
is ill posed, as discussed in the previous section, and the outgoing reflection coefficien
given by (2.14), withr =1, which gives

Rl <0 _y=-bHyU-D1

= 2
y+DyU+ 1)) = (O O(z )) asz — 0.

His modified boundary conditions are given by the matrix

2 zU+1D zU -1
E=| za-u) 2 0
-z(14+U) 0 2

with reflection coefficients

R! 0 < 0 ) asz— 0
= = —

and

R — <_Z(1_ U)Z _(7/ - 1)2

- 4
y+1D2  (y+ 1)2) = (0@ 0(z)) asz— 0.

(Note that the reflection coefficients given in [7] differ by constant factors from the one
given here, because Giles normalizes the right eigenvectors differently.)

For comparison with the boundary conditions presented heris, & Pa@ approximation
of degree(m, n), asz — 0 our reflection coefficients are

L 0
R = (O(Zm+n+4)>

and

R” — (0 O(Zm+n+2)) .

3. DISCRETELY NONREFLECTING BOUNDARY CONDITIONS

If the nonreflecting boundary conditions discussed in the previous section are to be u:
in conjunction with a finite-difference method for solving the system (2.1), the boundat
conditions must be discretized and combined with finite-difference equations for the inter
points. Typically, details of this implementation have not been discussed in the literatu
Often implementation involves ad hoc boundary closures for finite-difference schemes (ol
sided schemes at the boundaries, and special schemes for near boundary nodes when
stencil interior schemes are used). Some specific schemes have been presented for cor
finite-difference schemes [19], and for dispersion-relation preserving (DRP) schemes [2
However, a detailed analysis of accuracy and stability of these schemes has not been ca
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out when they are applied to various boundary conditions. In a more rigorous treatme
Carpenteret al. [2] have proposed particular boundary closures for high-order finite
difference approximations to one-dimensional hyperbolic systems. These schemes are
structed to couple physical boundary conditions to the boundary closure of the finif
difference scheme and can be proven to be stable. However, the boundary conditi
they use do not account for the dispersive nature of the finite-difference scheme ¢
do not attempt to control the extent to which spurious waves are reflected by smo
waves.

Spurious waves, which will be formally defined in Subsection 3.1, are an artifact ¢
the discretization, and have been extensively analyzed by Vichnevetsky [29] for the ol
dimensional advection equation. In a previous paper [3], we showed how to develop closu
for both downstream and upstream boundaries of the simple advection equation. Th
boundary conditions maintain the desired order of accuracy of the interior scheme, are sta
and minimize reflection of smooth and spurious waves at artificial boundaries. The clos|
for the “downstream” boundary of the simple advection equation is similar to a closul
of the finite-difference scheme, at least up through the order of accuracy of the inter
scheme. “Upwind” boundary closures, however, are not derivative operators but instead
designed to eliminate any reflection of upstream-propagating spurious waves. The hierar
of upwind conditions contains, as a special case, the upwind boundary conditions develo
by Vichnevetsky [29].

We first review this previous work on the simple advection equation, and in Subsection:
we extend the methodology to obtain numerically nonreflecting boundary conditions f
a system of one-dimensional equations in which all solutions to the continuous equatic
propagate in the same directiamg-wayequations). We then show in Subsection 3.3 how
these results may be applied directly to two-dimensional equations of the form (2.1), ag
so long as all the physical modes travel in the same direction. An example of such a probi!
is the Euler equations linearized about a supersonic mean flow. Finally, in Subsection
we treat the more generalo-wayequations of the form (2.1), such as the Euler equation:
linearized about a subsonic mean flow. The general procedure is to use the continu
boundary conditions of Section 2 to split the system into two one-way equations, and tf
apply the discrete boundary conditions of Subsection 3.3 to each one-way system.

3.1. Finite Difference Schemes and Spurious Waves

Several artifacts of finite difference approximations to hyperbolic equations play prorm
nent roles in the development of accurate and robust artificial boundary conditions. In tl
section we introduce these phenomena in the context of the simple scalar advection eque
in one dimension

Ut +Ux=0 (3.1)
which admits solutions of the form
u(x, t) = g ®x-ob, (3.2)

Inserting (3.2) into (3.1) gives the dispersion relatioa: k, so for this example the phase
velocity (cp = w/k) and group velocitydy = dw/dKk) both equal 1.
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We are interested in how discretization affects the above dispersion relation. We rest
our attention to the family of three-point central finite difference schemes given by

o (Uy)j+1 + (Uy)j +a(ux)j—1=%(uj+l_ujfl)v (3.3)

where we have introduced a uniform gridxnwith mesh spacing, and whereu; (t) de-
notes the approximationtd jh, t). See [19] for a detailed discussion of compact difference
schemes. For our purposes, it suffices to note thatdf0 anda = 1/2, we recover the stan-
dard second-order central difference scheme discussed abovepand j4 anda=3/4,

we obtain the fourth-order Padgcheme. The extension to wider stencils is discussed brief
below.

Inthis paper we consider exclusively a semi-discrete scheme, and hence neglect dispel
and dissipative effects of time discretization. Vichnevetsky [29] has shown that the ener
reflected at a boundary is invariant under time discretization and is equal to the ene
reflected in the semi-discrete case. Moreover, in cases when the semi-discrete equatic
solved with a 4th-order Runge—Kutta method, it has been shown in the one-dimensional
that the additional dispersion and dissipation are essentially negligible for CFL numbe
smaller than one (see [3]).

For the schemes given by (3.3), the modified wavenumber is

~ 2asinkh
kh=—-—"——.
1+ 2 coskh

Figure 1 shows the dispersion relatior= k and group velocity for the second- and fourth-
order schemes applied to the scalar advection equation (3.1).

Note that well-resolved wave&li « 1) travel with approximately the same group ve-
locity as solutions of the continuous equation, but poorly resolved waves (incrédging
travel with unphysical group velocities, and the most poorly resolved wates fr) travel
in the opposite direction. These waves that travel in the wrong direction have been cal
spurious numerical waveafter Vichnevetsky [29].

Finally, note that for each frequenay(below some critical value.), there corresponds
twovalues ok that satisfy the dispersion relation: a “physical” solution which travels in the
correct directiongg > 0), and a “spurious” solution which travels in the opposite direction
(cg <0), while for the continuous equation there was only one wavenutklber each

L e
0.8 ™
0 Oy
~e N,
0.6 W=, Selh
gy el
OW/r cg -
0.4f (P: o, .
LT T T .~ \ -2 5
0.2 Sel S,
S kY *,
pY
\
G 2 2 n n M " -3
() 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
kh/mt kh/mt

FIG. 1. Dispersion relation for the simple advection equation, with exact derivative, —; second-order centt
difference scheme, - - -; and fourth-order Badgthod, - -; and corresponding group velocity for the same schemes.
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frequencyw. The two numerical solutions are uncoupled in the interior, but are (usually
coupled by the boundary conditions. Even in the simple one-way advection equation, ph
ical waves reflect as spurious waves at the downwind boundary, with the opposite reflect
at the upwind boundary.

Difference approximations with larger stencils than (3.3) will have more than one sp
rious solution, though additional solutions will be spatially damped. If we wish to develo
nonreflecting boundary conditions, we must consider how all of the physical and spu
ous solutions are coupled at the boundary and attempt to minimize any reflections. |
larger stencils, the algebra becomes significantly more complicated. In order to concis
demonstrate the procedure, we restrict our attention here to the 3-point stencil.

3.2. One-Dimensional Numerical Boundary Conditions

Here we generalize the numerically nonreflecting boundary conditions derived |
Colonius [3] for the scalar advection equation

Ut +cuy =0,
whereu is a scalar, and apply this methodology to the system of partial differential equatio
Uy = —Muy (3.4)

for 0 < x < L, whereu is a vector withn components, ant¥l is ann x n positive-definite
matrix. Although the matriM is diagonalizable, here we shall not exploit this property, as
this in general is not the case for problems beyond one dimension. The following analy
is readily applicable to the multidimensional case, addressed in Subsections 3.3-3.4.

Separation of spurious and physical modeket us begin by identifying the spurious
and physical modes in a finite-difference approximation to (3.4). Introduce a regular gt
in x, with mesh spacing, and letuy denote the approximation tox = kh). Applying the
family of three-point finite difference schemes mentioned in the previous section to (3.
gives

oa(—=MUD)ks1 + (=MUk + a(=MUk-1= a%(Ukﬂ — Uk-1). (3.5)
Now introduce a (normal mode) solution of the form
U (t) = 0 e@tick, (3.6)
wherell e R", w € R, andk € C, so that
Uk4+1 =k Uk 3.7
and (3.5) becomes
[k*@l + aiwhM) + k(iwhM) — (@l —@iwhM)] G=N(w, £)0=0, (3.8)

whereN(iw, «) is the matrix in brackets. This linear system has nontrivial solutions onl
when

detN(iw, k) =0. (3.9
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Equation (3.9) isthe dispersion relation for the discretized system. Without loss of general
we may assume the matr is in Jordan form (similarity transform Eq. (3.8)), and so

n
detN(iw, k) = H [I{z(a~|— aiwhij) + «(iwhij) — (a— aiwhkj)],
j=1
where ther; (j =1, ..., n) are eigenvalues d¥1. Defining

¢; =whij, forj=1,...,n

and solving (3.9) fok gives

~ —igj £ (/482 — ¢p?(1 — 4a?)
e DS \/ e , (3.10)
2(a + aigy)

where thec*! satisfy
2@+ aig)) +cFlig; — (@a—aipj)) =0

for all j=1,...,n. Solutions are waves wher|=1, which corresponds tf#;| < ¢,
whereg. = 2a/+/1 — 4a2. Note that the number of roots (3.10) of the dispersion relation
forthe discretized equations ie 2vhile the dispersion relation of the non-discretized system
has onlyn roots, corresponding to threeigenvalues oM. Here, thect roots correspond to
the “physical” solutions, and the™ roots correspond to the “spurious” modes mentioned in
the previous section. Higher order difference schemes will have additional spurious mod

To distinguish the physical parts of the solution from the spurious parts, we conside
solution that is a superposition of modes of the form (3.6) and write the solutiahany
grid pointk as

Uy = zn: (u +u),
j=1
where thajfj are normal modes of the form (3.6) that satisfy
N(iw, Kij)ukjEj =0
forall j =1, ..., n. Note that
upl, =«tugt

Exact nonreflecting boundary conditionsThe exact nonreflecting boundary condition
at the left boundaryk(=0) is uo+J =0forj=1,...,n. Thisis equivalent to
1

ul = —u. forallj=1....n (3.11)
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since (3.11) may be written

+j —j +j —j
U’ +up’ = —(uy’ +u’)
) +j
+ - Ko™+
<:>UO]+UO]:7UO]+UO]

sincex ™ =1 (unlessp = ¢c). Similarly, the exact nonreflecting boundary condition at
the right boundaryl{= N) may be written

ul =«tul . (3.12)

Because the*!, given by (3.10), are not rational functions of the frequeagyvhen the
boundary conditions (3.11) and (3.12) are transformed back into physical space they \
be nonlocal in time, as mentioned earlier. We wish to derive approximate nonreflecti
boundary conditions that are local in space and time.

Approximate nonreflecting boundary conditiong&fter Colonius [3], we consider a nu-
merical boundary condition at the left boundaky=0) in the form of a closure for the
x-derivative. That is, we seek an approximately nonreflecting boundary condition of tl
form

wherec; anddc(k=0, ..., Ng) are coefficients to be determined aldis still the matrix
from (3.4). Taking a Fourier transformin time and splittinigito its rightgoing and leftgoing
modes, the boundary condition becomes

n Ng n
cliohM > (ug! +up’) = de<z (u) + u[j)> (3.13)
k=0

=1 j=1

. Nd . . n . Nd . .
> (cli ohMug’ = " de () )kug'> =Y (- cliohMup’ +> di(c™! )ku51> :
j=1 k=0 j=1 k=0

(3.14)
Now, it is shown in the Appendix that

N(w, k*Hu=0& Mu=Ax;u. (3.15)

Hence,



518 ROWLEY AND COLONIUS

and so, writingp; = wh2;, and recalling from (3.10) that for a particular schenté is a
function only of¢;, (3.14) becomes

n

D ocgpnug’ =" digpuy’, (3.16)

=1 =1

where

Ng
C(¢j) = Crigpj — Y _ (k)

= (3.17)
d(¢)) = —Ciigj + > _ dlc D~

Now for the boundary condition to be exaugé =0,V]j), we required(¢) =0, and for the
boundary condition to be well-posed we requi@)/c(¢) be bounded. So, we pick the
coefficientsc; anddy in order to minimized(¢) in some sense. Here, we consider the Taylor
series ofd(¢) abouty =0 and choose the coefficients so that as many terms as possik
in the Taylor series are zero. Note thatis proportional toh, and thus a Taylor series
expansion aboup = 0 is consistent with the convergence of the discrete approximation i
the limitash — 0. The resulting errors (and reflections) &ep™N+1) asp — 0. Well-posed
schemes of various orders were derived in [3]; some of these are repeated for convenien
Table I. (The column labeled bcO is an ad hoc boundary condition which will be discussed
Section 4.) Apparently, stable schemes to arbitrarily high order can be determined (see [
The right boundary condition is treated similarly. For the poigtwe start with

d
3.1h|\/|ﬂ ZkaN K>

wherea; andby (k=0, ..., Np) are coefficients to be determined. Separating the spuriou
and physical modes, as above, gives

Y a@puy = > bigyuy’ (3.18)
j=1 j=1
where
Np by
a(¢)) = a1idj — Z Gy
(3.19)

b)) = —ai¢; + Z

. (k- J)k'

Here, for the boundary condition to be exauﬁ’(:O,Vj), we requirea(¢) =0, while
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TABLE |
Coefficients for Numerically Nonreflecting Boundary Conditions,
with the Interior Scheme a=3/4,a=1/4

Scheme bcO bcl bc2 bc4 bc6 bc8
Order — 2 3 5 7 9
ar 1 2 12 72 432
bo -1 -3 —25 —175 —1143
b, 1 4 48 424 3236
b, -1 —36 —-521 —5366
bs 16 456 6852
b, -3 —253 —6208
bs 80 3868
bs —11 —1578
b, 380
bsg —41
C 1 -1 -2 —4 -8 -16
do 0 3 9 45 189 747
dy 3 12 120 792 4380
d, 3 132 1539 12318
ds 72 1704 20796
d, 15 1095 22560
ds 384 15972
ds 57 7170
d; 1860
ds 213

a(¢)/b(¢) remains bounded, so we choose the coefficients so that as many terms as pos:
in the Taylor expansion ad(¢) are zero. These coefficients are also given in Table I, ant
for the right boundary condition the reflections @ép"N-+1) as¢ — 0. See [3] for a more
general treatment of boundary conditions of this type; this reference also demonstrates |
to write numerically nonreflecting boundary conditions for boundaries where incomin
waves are specified, as in a scattering problem.

For future reference, we introduce a more concise notation for the numerical bound
conditions. At the right boundary, where all physical waves are outgoing, we write tt
boundary condition as

—M(%de?\,uN, (3.20)
where @, is the operator defined by
1o
d%,un =~ah kiz:obkuN_k. (3.21)

At the left boundary, where the physical waves are incoming, the numerical bounde
condition is similarly written
dUO

—ME = dhup, (3.22)
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where ¢ is defined by

: 1
d'Ouoz—Cl—h > diu. (3.23)

Note that these boundary conditions apply only wheris positive-definite. Similar bound-
ary conditions may also be derived for the case wileis negative-definite, and the coeffi-
cients merely change sign. Wh&h< 0, physical waves are incoming at the right boundary
and outgoing at the left boundary, and the resulting boundary conditions are written

—Md;‘—t’“ = dyun (3.24)
—M% = d%up (3.25)
where & and ¢ are defined by
_ 1 N
dyuy = o kz:%dku,\._k (3.26)
1
Pug = ah I(Z:%bkuk. (3.27)

Note that with this notation, the boundary conditions given by (3.20), (3.22), (3.24
and (3.25) take the form of the original Eq. (3.4), with the operat'@,?@ dcting as clo-
sures for thex-derivative. So as long as we havere-wayequation, we can immediately
apply a discrete nonreflecting boundary condition just as easily as applying a closure fc
derivative.

3.2.1. Single mode reflection coefficient¥he numerical boundary conditions given
in Table | are, of course, approximate. One way to quantify the error introduced by tf
approximation is by means of a reflection coefficient. Take the right boundary first, ar
consider how a single outgoing modé! is reflected. From (3.18), we have

a@uy’ = b(gjuy’

—j a(oj) i
= [lud' || = W,;) Jud ]
= 0% [|ug’]].

wherep® =a/b is the numerical reflection coefficient for the outflow boundary condition
d°. It describes the spurious wave reflected by an outgoing physical wave. Similarly, at t
left boundary we have

lug” || = 1" @] luo’|

’

wherep' = d/cis the numerical reflection coefficient for the inflow boundary conditign d
and describes the physical wave reflected by an outgoing spurious wave. The magnitu
of the reflection coefficients are plotted for several choices of coefficients in Fig. 2. No
that waves at the critical frequency always suffer pure reflection.
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0.9 0.9
0.8 0.81

0.7, 0.7t
0.6 : 0.6/

Ipil os lpel o5t
0.4 0.4F
0.3 0.3f
0.2 0.2r
0.1 (o814
0 0.2 0 0.2 0.4
/e
FIG. 2. Inflow and outflow reflection coefficients for boundary conditions be2, bc4, ---; be6, ---; and
bc8, —; from Table I.
3.3. Numerical Boundary Conditions for One-Way Systems
As before, consider the system
U + Auy + Buy =0 (3.28)

forO<x <L, yeR, whereu is a vector witm components, ané andB are matrices, but
now consider the special case whé¥és a definite matrix. As described in Section 2Aif

is positive-definite, then the modes of (3.28) all travel to the right, andAfis negative-
definite, the modes all travel to the left. Hence, we refer to this special caseres\aay
systemand for such systems the discrete boundary conditions of Subsection 3.2 may
applied directly.

First, note that it is trivial to write a nonreflecting boundary condition for the continuou
equations. If for instancé > 0, then at the right boundary & L), all modes are outgoing,
so no boundary condition is specified, and at the left boundary all solutions are incomir
so the nonreflecting boundary condition is mere(9, y, t) =0. When the equations are
discretized, however, the problem is not trivial.

The analysis of the previous two sections shows that when the equations are discreti:
spurious modes will be introduced which will travel in the opposite direction as the physic
modes. Thusy physical modes will still travel to the right, but nawspurious modes will
travel to the left, and so it is important to use discrete nonreflecting boundary conditions
both boundaries to avoid numerical reflections.

Taking a Fourier—Laplace transform of (3.28), witk, s) the dual variables ofy, t),
and definingz=ik/s as before, we have

0y = —sM(2)0, (3.29)

where M(z) = A"1(1 +zB). Now, we have an equation which resembles the one
dimensional system (3.4), except that now the ma\itis a function okz. Thisz-dependence
carries through the analysis of Subsection 3.2 unaltered, so from Egs. (3.20) and (3.22)
may immediately write down nonreflecting boundary closures for the discretized equatic
as

—sM(2)up = djuo (3.30)
—sM(z)uy = djun, (3.31)
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where the operatorg,@nd &, are defined by (3.23) and (3.21). Taking the inverse Fourier-
Laplace transforms, we are left with

5 | 5
% + Adyuo + BaiyO —0 (3.32)
du au

8—'[N + Ad?\lUN + Ba—; =0 (3.33)

which is exactly the form of the original Eq. (3.28) with the operat(gramﬂ 4, taking the
form of closures for th&-derivative. Typical boundary closures used for one-way equation
(such as the Euler equations linearized about a supersonic flowg es@in place of (3.32)
and use a one-sided difference approximation taxtaerivative in place of § in (3.33).
Such an ad hoc approach gives a greater reflection of physical waves into spurious we
at the downstream boundary, aperfect reflectiorof spurious waves into physical waves
at the upstream boundary.

3.4. Numerical Boundary Conditions for Two-Way Systems

We now derive numerically nonreflecting boundary conditions for two-way systems, i
which the continuous equations admit both rightgoing and leftgoing solutions. The idk
is to use the boundary conditions for the continuous equations to decouple the two-w
system into two one-way systems, and then to apply the discrete boundary conditions
the previous section to each one-way system.

Consider again the system (3.28), written in the transformed form

Uy =—-sM(2)d

and assume for the moment that we have access to a pair of perfectly nonreflecting boun
conditions for the continuous equations, which we write (as in Section 2) as

E'0 =0, atx=0

(3.34)
E'"0=0  atx=L,
whereE' andE"" may be functions of. Now define the square matrix
EI
E@ = gl
and letT (z) be the matrix of right eigenvectors & (z), arranged so that
A0
T MT=A= < ”), (3.35)
0 A

whereA' is positive-definite foz = 0 (rightgoing), andA" is negative-definite foz =0
(leftgoing). Since the boundary condition (3.34) is perfectly nonreflecting, it follows (se
Subsection 2.1) that the matrix

C:=ET= (COI COH) (3.36)
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is block diagonal. Furthermore, if both boundary conditions are well posed, it follows th:
C is invertible, and hence the square matéxs invertible. We now use the matri to
transform to a coordinate system where rightgoing and leftgoing modes are decoupled.
g=EQ. Then

ig: —sdg, (3.37)

E0=-s(EME}EQ, ie.,
dx

£l

where

®:=EME = ETAT HE?
=CAC™?

CaE e 2
(2 2)

The eigenvalues ob' and®" are the same as the eigenvalues\bnd A", respectively,
so Eq. (3.37) is a system of two decouptate-wayequations

ig' _ —sdD'g'
dx
d n_ I Al

where the first equation has purely rightgoing solutichs= 0 for z=0), and the second
equation has purely leftgoing solution®'( < 0 for z=0). Since the rightgoing and left-
going modes are now decoupled, we may apply the numerical boundary conditions fr
Section 3 to each equation. Introducing a regular gridvith mesh spacing and letting
ok denoteg(x = kh), at the left boundarik =0 we may write the discrete (approximately)
nonreflecting boundary condition
—sd'gl = dhgl (3.38)

—so''gf = d3gy (3.39)

and at the right boundatky= N we have the boundary condition

—sd'gy = dygy (3.40)
—sd''gl = dy,gh. (3.41)
As described in Subsection 3.2, these discrete boundary conditions are nonreflecting u

arbitrarily high-order accuracy ds— 0, and note that this is the first approximation that
has been made. Defining the matrix operators

D _ (% 0O

T lo @

@l 0

Dg = _
R (0 dNI>’

(3.42)
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where| denotes the identity matrix of appropriate dimension, and recallinggthaE(
and®E = E M, the boundary conditions become

—SE(z)M(2)0o = DL E(2)09
(3.43)
—sE(z)M(z2)0n = DrE(2)0N.

So far, we have assumed that the boundary conditions (3.34) for the continuous equati
were perfectly nonreflecting. For many examples, including the linearized Euler equatiol
the exact boundary conditions are nonlocal in space and time (i.e., the mBéatjyigontains
non-rational functions of), so it may be desirable to replaégz) with an approximation
E’(2) that is rational. For the linearized Euler equations (cf. Subsection 2.2), this appro
mation corresponds to replacipgz) with an approximation(z). When this approximation
is introduced, the matri€ in (3.36) will not be exactly block diagonal, but will have small
off-diagonal terms, and so the subsequent equations will not be perfectly decoupled, :
errors will be introduced. The errors for such local, approximately nonreflecting bounda
conditions can be analyzed, as follows, by considering the reflection coefficients.

3.4.1. Discrete reflection coefficientsTake the left boundary first and consider the
approximately nonreflecting boundary condition

—sE'Mg=D_E'Q (3.44)

and transform to characteristic variables= T—10 to obtain

—SCAfo: D|_Cf0, (345)
where now the matrix
, CI DI
C=ET= (D” C“) (3.46)

is not perfectly block diagonal. Writing (3.45) as

4 26 )5 D 2o o

and recalling from Subsection 2.1 the continuous reflection coefficient matRtes
—(CH D" andR" = —(C")~1D", the boundary condition becomes

(dy+sA')fg — R (dy+sA")f) =0 (3.48)
(a9 +sA") fg' — R'(d§+sA') fg = 0. (3.49)

Since f'! are purely rightgoing modes arfd' are purely leftgoing modes, it is clear from
these equations that when the reflection coefficient matrices are not identically zero, we
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applying the wrong numerical boundary condition to some of the waves at the boundz
For instance, in the second term of (3.48), we are incorrectly applying theedator to an
outgoing wavef ', and in the second term of (3.49) we are applying thegkrator to an
incoming wavef'. These are the terms that arise from imperfect decoupling and will cau:
reflections.

To proceed, we split the solutioh into physical and spurious partst and f—, as
in Subsection 3.2. Sinca is diagonal (with diagonal elements), we may easily write
(d'o+SA) fg in terms of components

) . . 1 . . . .
(Gt (167 + f57) = =0 > a8+ 80+, (157 + 157

Ng
1 S dete ¥ )i
= Cl—h<018mj — de (et )fo

k=0

1 N . -
— Cl_h< — Clsh)»j + Z dk(lc_])k> fO_]

k=0

1 B .
= Cl—h(c(¢>j)f0+' —d(gpfe ), (3.50)

wherex®/ are the shift operators from Subsection @) andd(¢) are defined by (3.17),
andi¢; =shi;. Similarly, we have

(6B +1) (fo” + o) = — (@t — b o)

1
T
) . 1 . _ .

(0 +saj) (fy) + ) = —Cl—h(c(¢,-)fN“ —d(¢)) f!) (3.51)
. ; . 1 , »
(dy +s1j) (" + fy?) = @(a@i)fﬁj —big) fy!).

wherea(¢) andb(¢) are given by (3.19) and denotes the complex conjugateaf(Note
that«®! = 1/«k*) as long age;| < ¢c.) Then (3.48) and (3.49) become

Cife" — Difg” — RY(Cofg " — Dofg ") =0

~ ~ - _ (3.52)
AxfyT — Bafy™ — RY(ALfg ™ — Bafg ™) =0,
whereA; 5, B1,, C12, andD , are diagonal matrices of the form
a(¢1) a(+1)
A_‘l = °. . s A_2 = t. .
a(gn) a(¢n)
(3.53)
c(¢1) C(ér+1)
C = , C,= , etc.

c(ér) C(¢n)
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Solving for the incoming modes in terms of the outgoing modes, we have

f(|)+ B I CIlRI D2 -1 Cl_lDl Cl_lRICZ f0|— (3 54)
fou— - §£1R||'A_l | §2—1R|| |§1 572—152 f6|+ ’ ’

where the matrix on the right hand side is the matrix of reflection coefficients. An identic
analysis for the right boundary condition

—SE/MCINZ DREION (355)

gives the reflection coefficients

W) | BR'A\ T/ Bi'AL  B{'RB, [ fit (356)
fll+ C;'R'D; I C;'R'C; C;'D, )\ fy~)

Recall from Subsection 3.2.1. that the matri&s'A and C~1D represent theliscrete
reflection coefficients for the given numerical boundary condition. Axtminuousre-
flection coefficient matrice®' andR" go to zero, then, we retrieve the one-dimensional
numerical reflection coefficients. R' andR'" are not zero, we may compute the necessary
inverses using the general formula

X\t | + XAy —XA-l
vy o) T —aty oAt (3:57)

as long asA =1 — Y Xis invertible. For the local boundary conditions presented in Sub.
section 2.2 for the subsonic linearized Euler equations, the reflection coefficients at the
boundary are

i
cay (PO 0 0 .
; big,)d(3) C0g)  Ady)did3)
i 1 2 1 3) a9y
f2= O Pz (1 RiRe b(¢3)d(¢z)) Rias (C(¢2) b(¢3)0(¢2)> f2],
f-3 1 (B Egd@2) YR O a(¢2)c(d3) f+3
0 Rear (56 ~ Bwarcon Po(¢a) 5 (1- RiRe 2 8(p)0(2)

(3.58)
whereA| =1 — RiRx(a(¢y) d(¢3))/(5(¢3)c(¢2)), and at the right boundary are

p°(¢1) 0 0
f-1 _ _ f+1
ori 1 (1. a(ga)E(®,) 1 (P6y)  ay)digs)
-2 | — 0 0°(¢2) Ain (l Ri R, 2,509 RlAR b6 b6, f+2 |
f+3 1 (T agyder) S b(g,)d(¢2) £-3
0 Roar (&0 ~ bippawe PHP3) 5 (1~ RiResans

(3.59)

whereAr =1 — RiRx(a(¢3) d(¢2))/(b(¢2)C(¢3)).

It is worth mentioning several features of the reflection coefficients given above. C
course, for the discrete system there are nine reflection coefficients at each boundary, w
for the continuous system there are only two at each boundary (cf. Subsection 2.2.3). N
that the vorticity wavef ! is perfectly decoupled from the acoustic wavigsand f 3, even
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when the boundary conditions are discretized. This result may seem obvious, tndtit is
the case for typical ad hoc closures.

Note, however, that the continuous reflection coefficiditand R, are multiplied by
coefficients that depend on the numerical boundary closure used. Most of these coefficie
(e.g.,p°, p') become smaller as the order of the numerical boundary conditions given
Table I increases. However, some of them increase, so we must be careful when decic
which numerical boundary condition to use. This point will be discussed further when te
cases are presented in Section 4.

3.5. Implementation of High-Order Boundary Conditions

Even though the boundary conditions given by (3.44) and (3.55) are local, they invol
potentially high-order derivatives in time and space. In order to implement them efficientl
it is desirable to write the high-order equations instead as systems of first-order eq
tions. Goodrich and Hagstrom [8, 12] accomplish this by expanding rational functions
partial fractions and introducing state variables (auxiliary variables). We present an alter
tive approach, analagous to the standard method by which high-order ordinary differen
equations are reduced to systems of first-order equations.

First, it is useful to rewrite the boundary conditions as closures foxtterivative. A
closure is necessary whenever an implicit finite-difference scheme is used, and formula
the boundary condition in this way is useful also for explicit schemes, as the boundzs
points are solved using the same equations as the interior points. Thus we use the inte
equations

Oy =—-sM@0=—-sA 1 +zB) (3.60)

to rewrite the boundary conditions (3.44) and (3.55) as the boundary closures

"
EKZ)% =D_ E/(Z)ao

aax (3.61)
E'(2)—* = DRE'(2)0n,
2 % rRE(2Un

wheredlp/ax andaly /dx denote the closures for the derivatives at the boundaries. Nov
the matrixE’ is a rational function of, but by multiplying each row of this equation by its
least common denominator we may obtain a new system that is polynonzjal in

alg .
E"(z— =D_E"(2)
()ax LE"(2)0o

- (3.62)
14 auN " iy
E"(2)— =DgrE"(2)ly,
aX
where now the matrix
E'(2=Eo+zE +--- + ZPE, (3.63)

is a polynomial inz. If we were to multiply through byP and take the inverse Fourier
and Laplace transforms, we would obtain partial differential equations for the closur
d0o/0x andaly/dx that involve high-order mixed partial derivatives. Instead, we may
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write expressions for the closures that do not involve high-order derivatives in time at
space by introducing auxiliary variables. At the left boundary, the closure (3.62) may |
written

dUg 0
Eo— = D_Epu —(Fou h
0 L00+8y(00+ 1)
ah; d ,
W:DLEjUO—i—a—y(Fon-i-thrl), j=1,...,p—-1 (3.64)
dhp 3
— =D Epu —Fpu
ot L EpUo + ay pUo,
wherehg, ..., h, are state variables, and the matriégs. . ., F, are defined by
Fo= E;AL
Fi=E;A'B+E 1At j=1..,p-1 (3.65)
Fp = EpAT!B.

The right boundary closure for the poia, may be treated similarly, witld, replaced
by Dg.

If E'(2) is a rational function of degre@n, n), then the number of auxiliary variables
required isp= maxm, n + 1}. If m=nor m=n+ 2 (required for well-posedness), then
the continuous reflection coefficients for the linearized Euler equation® @) at the
left boundary andD (z2P*?) at the right boundary (cf. Subsection 2.2.4). For instance, if &
(4,4) Pad’approximation tg (z) is used, five state variables are needed at each boundar
Since the number of pointd in a computation is typically one or two orders of magnitude
greater than this, the additional computational cost for highly accurate boundary conditic
is often negligible.

Additional details concerning implementation for the linearized Euler equations are ava
able on our website, atttp://poisson.caltech.edu/cfda.

4. TEST CASES

In this section we give the results of test problems that we have constructed to valid:
the numerically nonreflecting boundary conditions presented in the previous section anc
illustrate some subtleties. Specifically, we have tested the discrete boundary condition:s
Subsection 3.4 on the linearized Euler equations, using the continuous boundary conditi
from Subsection 2.2, with several different rational function approximationg for and
several of the different schemes for boundary closures reported in Table I. In particul
we have considered the (0,0), (2,0), (2,2), (4,4), and (8,8% Rpgroximations tg.. As
mentioned in Subsection 2.2.4, the (0,0) approximatior: () is the one used by Giles
in [7], and the (4,4) approximation is equivalent to the approximation used by Goodric
and Hagstrom in [9]. Finally, we have implemented a (4,4) rational function approximatic
that is chosen to interpolate the functip(r) at specific points, so that the resulting bound-
ary condition is perfectly nonreflecting for waves at certain angles to the boundary. Tt
approximation will be referred to as “(4,4) Interp” in the discussions below. The specifi
interpolation points are=0, £1/4, +1/2, +£3/4, and+1, and were chosen to improve
performance for nearly tangential waves.



DISCRETELY NONREFLECTING BOUNDARY CONDITIONS 529

In assessing the effects of the numerical nonreflecting boundary closures, it is usefu
compare our schemes with a typical “ad hoc” boundary closure. In this closure, we atter
to reproduce what we believe is the standard way of implementing nonreflecting bound:
conditions. That is, we implement (2.17) directly and use a 4th-order explicit closure f
the finite difference in th&-direction whenever necessary.

In all tests, we compute the solution on a two-dimensional domain that is periodic in tl
y-direction. The fourth-order Pedschemed = 3/4,«a = 1/4) is used for the spatial deriva-
tives, and 4th-order Runge—Kutta time advancementis used to advance all equations, bo
ary conditions, and state variables. We have observed that the CFL constraint of the sch
is unaffected by the boundary conditions or boundary closures, though we have no pr
of this in the general case. The results given below all use a (maximum) CFL number of

4.1. Convection of a Vortex

In the first test, we consider the propagation of a vortex in a uniform streanuwitli /2.
To avoid the slowly decaying tangential velocity associated with finite circulation in twi
dimensions, we chose an initial “sombrero” vorticity distribution that has zero total circt
lation,

_}ﬂ 25— (r/a)?
= (Fe),

wherer = 1/x2 + y2,inthe computational domainl0u < X, y < 10x, with 101 grid points
in each direction. In the plots, lengths are given with respeeat #nd time is normalized
by @ and the sound speed of the base flow.

The continuous boundary conditions are exactly nonreflecting for the vorticity wav
independent of the choice of rational function approximation. Thus, all reflections will b
spurious numerical waves, so this test is useful in assessing the effectiveness of the boun
closures from Table I, as compared with the ad hoc 4th-order closure.

Figure 3 shows the RMS value of the vorticity (owerandy) as a function of time.
Neart =20, the vortex is passing through the right boundary. If there were no spuriol

10 : :
p o Ad hoc 4th—order
. o he2

10 v bc4
& o bcb
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FIG. 3. Initial vortex. The RMS vorticity in the computational domain as a function of time for several
different nonreflecting boundary closures (see Table I).
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reflections, then the energy within the domain would decrease to zero. However, the exit
vorticity produces a spurious vorticity wave, which propagates upstream. The strength
this wave is evident between times 25 and 40 and is drastically reduced as the orde
the boundary closure for the outgoing (smooth) waves €atl.) is increased. The ad hoc
boundary closure (which uses a fourth-order one-sided difference scheme for closul
produces the same results as boundary condition bc4 in this regime. However, the spuri
wave eventually reflects at the upstream boundary, and the reflected energy is again gre
reduced by using the high order nonreflecting boundary closures. The ad hoc bound
closure shows perfect reflection of this spurious wave at the inflow boundary. Eventual
the energy stops decreasing for the high order closures, once most of the low-freque
waves (both physical and spurious) have left the domain and the error is dominated
waves near the critical frequency (recall from Subsection 3.2.1 that waves at the criti
frequency always suffer pure reflection).

4.2. Propagation of a Pressure Pulse

In the next test, an initially Gaussian distribution of pressure spreads out as a cylind
cal acoustic wave in the domain with a uniform velodity= 1/2. This problem (on both
periodic [9] and nonperiodic domains [23]) has been suggested several times as a tes
the efficacy of boundary conditions, since the numerical solution may be compared to 1
exact solution, which may be solved by quadrature. In the present case, we compare wi
reference solution we obtain by performing the computation on a much larger domain, ur
that time when it first becomes contaminated by reflections (physical or spurious) fromt
boundaries. This procedure is useful for isolating errors associated with the boundary ¢
ditions alone, since in the present case these can, for the most accurate boundary condit
be smaller than other truncation errors.

The Gaussian pulse is initially given y= exp —(r /a)?, wherea is the initial width
of the pulse. Again the amplitude is unity, asmds used for the length scale in the nondi-
mensionalization. The grid is identical to the one for the vortex test discussed above.
Fig. 4, pressure contours of the solution are plotted (top row) at several different time
and show the propagation of the wave. Since the domain is periodic, waves from imag
of the initial condition are evident beginning at tirhe- 12. By timet = 20, we see that
a significant component of the wave motion corresponds to nearly glancing waves. (N
that forU = 1/2, waves whose group velocity is tangent to the boundary have wavefron
at an angle sint U = 30° to the horizontal.) As discussed at the end of Section 2, all of the
rational function approximations in the continuous boundary conditions give pure reflectit
for waves that are tangent to the boundary.

Figure 4 also shows the error (difference between the computed solution and the refere
solution) for several different boundary closures: the ad hoc boundary closure, and th
nonreflecting closures, bc4.0, bc8, and bc8.0. The closure be8 uses all coefficients fr
scheme bc8 in Table |, and the closures bc4.0 and bc8.0 use coefficients from schemes
and bc8, respectively, everywhere except at the right boundary, where the incoming clos
uses bc0. These closures are discussed in more detail below. All results in Fig. 4 are fi
(4,4) Pa@approximation foy (2).

InFig. 4, att = 8, the ad hoc closure shows a leftgoing spurious wave emanating from tt
right boundary as the physical pressure wave leaves the domain. The closure bc4.0 st
the same reflection, but for the higher order closures bc8 and bc8.0 this reflection is ab
two orders of magnitude smaller, too small to show up on the same contour levels. At tir
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FIG. 4. |Initial pressure pulse. Contours of the pressure (/ril, max 0.1) at several instants in time for the
reference solution; contours of the error in the pressure (nidr®, max 10°°) using a (4,4) Paglapproximation
for y (2), with the 4th-order ad hoc closure, and with discretely nonreflecting closures bc4.0, bc8, and bc8.0.

t =12, the ad hoc closure shows the sawtooth spurious wave reflecting off the left bound
as a smooth, rightgoing physical wave. The initial pressure pulse still has not reached the
boundary. For bc4.0, even though the spurious wave leaving the left boundary has the s
magnitude as it did for the ad hoc closure, the reflection into a physical wave is drastica
reduced, so that by tinte= 16 the closure bc4.0 shows no trace of the spurious wave, whil
the ad hoc closure has produced a conspicuous reflection, traveling to the right.

Also by this time,t =16, a different sort of error is beginning to appear at the right
boundary. This is the error from the continuous boundary condition, the error in the (4,
Pad approximation fon (z). It propagates into the domain very slowly, as the only sig-
nificant reflections are for waves whose group velocity is very small. Compared to tl
ad hoc closure, this error for closures bc4.0 and bc8.0 is slightly smaller, but for bc8 tt
error is noticeably larger. This effect is explained by the discrete reflection coefficients
Subsection 3.4.1 and is the motivation for the closures bc4.0 and bc8.0, discussed in n
detail below.

By timet = 20, the initial pressure pulse reaches the left boundary and produces anot
spurious reflection, apparent in the ad hoc closure and in the closure bc4.0. Again, t
reflection is much smaller for the closures bc8 and bc8.0, but the error at the right bound
(from the Pad approximation) is still larger for bc8. By timie= 24, this error overwhelms
the error from spurious reflections, as the waves from the initial pressure pulse appro
tangential incidence.

Performance of the ad hoc closureigure 5 shows the error from the 4th-order ad hoc
closure, the standard way of discretizing nonreflecting boundary conditions, for vario
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FIG. 5. Initial pressure pulse. The RMS error as a function of time for several different rational functiot
approximations foy (z), all with a 4th-order ad hoc boundary closure.

rational function approximations fgr(z). We plot the RMS value (over the computational
domain) of the error between the numerical solution and the reference solution as a funct
of time.

Atearly timeg < 6 when the acoustic wave is leaving the right boundary at nearly norme
incidence, the error in all the boundary conditions is very small, but the error increases
the wave near the right boundary rotates away from normal incidence. Note that 16,
increasing the accuracy of the rational function approximation beyond a certain point dc
not further decrease the error. This error, starting at abet8, is the spurious wave
reflected off the right boundary (clearly shown in Fig. 4), and the ad hoc closure is helple
to decrease this reflection, no matter how accurate the rational function approximation. |
later times, of course, the more accurate boundary conditions perform better, as subseq
physical reflections are smaller, but the adverse effects of the spurious waves remain. I
four boundaries were nonreflecting, note that the wave would have left the right bounde
by timet =12 (cf. Fig. 4) so the error would be dominated by the spurious reflections
Thus, when an ad hoc closure is used, often there is little point in increasing the order
the rational function approximation beyond a certain point, as the error may be dominat
by spurious reflections.

Performance of the discretely nonreflecting closurda.Fig. 6, we again plot the error
between the numerical solution and the reference solution, but for several different numer
boundary closures from Table I, using both (0,0) and (4,4 Raxbroximations foy (z).
The closure bc8.0 is the same as shown in Fig. 4, described above.

Consider first the (4,4) PadScheme (solid line), where the continuous reflection co-
efficients are small. At early times, the benefit of using the higher-order closures for tl
outgoing waves is evident. The initial “bump” in the curves centered aroend is the
spurious wave reflecting from the right boundary, as noted above. The amplitude of
error is decreased as the order of accuracy of the closure is increased. That is, sche
bc8 and bc8.0 give the best results, and using scheme bc2 gives the worst results, with
4th-order ad hoc closure lying in between.
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FIG. 6. Initial pressure pulse. The RMS error as a function of time for several boundary closures with
(0,0) Pa@ approximation foy (z), - --; and a (4,4) Paglapproximation, —.

For longer times, though, the difference between schemes bc8 and bc8.0 becomes
parent. The closure bc8.0 consistently performs best of all. For bc8, however, around ti
t =10, the error starts to grow, soon exceeds the error from the ad hoc closure, and eventt
performs worst of all!

This same effect is seen even more drastically when the (0,@)$ehdeme is used (dashed
line). Here, at all times, scheme bc8.0 performs the best, but scheme bc8 performs wor:
all.

A closer look at reflection coefficientsThis surprising result is explained by the dis-
crete reflection coefficients given by Egs. (3.58) and (3.59). The numerically nonreflecti
closures are designed to minimize the single-mode reflection coeffigi@aisdp'. More
precisely,p® decreases as the order of tHfeaperator increases, and decreases as the
order of the toperator increases (see Fig. 2). These single-mode reflection coefficients .
the dominant terms in the matrices of discrete reflection coefficients (3.58) and (3.59)
long as thecontinuougeflection coefficientdR; and R, are small. However, iR; and R,
are not small, the off-diagonal terms in these matrices become important.

Forthe closures given in Table I, some of these reflection coeffidimrsaseas the order
of the closures increases. In particular, the magnitudgda) /c(¢3) increases as the order
of the operator dincreases, and the magnitudendd,) /b(¢s) increases as the order of the
operator 8 increases. At the left boundary, the teln,) /b(¢3) multiplies the continuous
reflection coefficienR; in the reflection coefficient from a leftgoing spurious acoustic wave
to a rightgoing spurious acoustic wave, so increasing the order of the outgoing cl®sure
will increase this reflection. At the right boundary, the tectip,)/c(¢3) multiplies the
continuous reflection coefficiem; in the reflection coefficient from a rightgoing acoustic
wave to a leftgoing acoustic wave. Thus, increasing the order of the closures will incree
these two reflections. This effect is evident whenever the rational function approximati
breaks down and the continuous reflection coefficiéntis not small: in our case, this
happens when a low-order approximation/) is used, or for long times, when waves
near the boundary are nearly tangent to the boundary.
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FIG. 7. Initial pressure pulse. The RMS error as a function of time for several boundary closures with
(4,4) Pa@ approximation fog (2), - - -; and an (8,8) Padapproximation, —.

Understanding these tradeoffs, we may carefully choose which closure to use at e
boundary to produce the most accurate boundary condition for a specific problem. For
present test case, if initially no spurious waves are present (i.e., the initial condition is wi
resolved) then thprimary reflections will be physical waves reflecting as spurious waves
At the right boundary, to make the primary reflection coefficients as small as possible, \
should makey® andc(¢,) /c(¢3) as small as possible. To mak&small, we use bc8 for the
operator @, and to make(¢,) /c(¢3) small, we use bcO for the operatdr/e choose bcO for
the operatordat the expense of increasing reflections of spurious waves at the right bound:
(increasing'), but these reflections are less important, as they wikwendaryeflections.

At the left boundary, to make the primary reflection coefficients small we should mak
0° as small as possible by using bc8 f8y dnd alsa(¢3) /c(¢.) small by using be8 for'd
The resulting boundary condition is labeled bc8.0 in the previous figures. As we expe
this carefully constructed boundary condition produces the smallest error.

High-order rational functions and high-order closuregrigure 7 shows the error for
several closures, when a high order (8,8)dPapproximation is used (solid line), compared
to a (4,4) Pad approximation (dashed line).

For early timest(< 20), before the waves are close to tangential incidence, increasir
the rational function approximation improves the error little, if at all, for the lower ordel
closures (the ad hoc closure and bc2) because the error is dominated by spurious we
For the higher order closures bc8 and bc8.0, however, increasing the rational funct
approximation significantly improves the error, since here the spurious reflections are sn
and the continuous reflection coefficients are important.

Finally, we add that many physically realistic acoustic fields will not involve waves nez
glancing incidence, and in those cases uniformly more accurate results are obtained as
order of the nonreflecting boundary closure is increased.

Comparison with other truncation errors We mentioned earlier that the boundary errors
can be smaller than other truncation errors. This is especially true for the reflections of s
rious waves, which are reduced as some powéragh — 0. For nearly tangential waves,
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where the boundary error comes from a breakdown of the rational function approximatic
the error is much larger than other truncation errors, and does not scale.with
For the 4th-order ad hoc boundary condition, for early tinhesZ0) the boundary errors

shown in Fig. 4 are smaller than the other truncation errors (although of the same ord
One might then question why we should be concerned with such small errors. Althou
the spurious reflections are smaller than the other truncation errors, they are much
insidious. The other truncation errors consist entirely of phase and amplitude error, and |
non-periodic problem, they will eventually leave the domain, while the boundary errors wi
reflect back and forth and persist indefinitely. Furthermore, in a sensitive computation st
as an aeroacoustic computation of a flow with self-sustained oscillations, these reflecti
may be amplified and cause the flow to oscillate at non-physical frequencies, while amplitt
and phase errors are more benign and do not cause such qualitatively different behavic

5. CONCLUSIONS

We have developed a framework for constructing local, strongly well-posed bounda
conditions for finite-difference solutions of linear hyperbolic systems. These bounda
conditions take explicit account of the dispersive character of the finite-difference apprc
imation and are designed to minimize the reflection of spurious waves at the boundar
As such, they are dependent on the particular finite-difference scheme, and we have
a 3-point Pad’centered-difference scheme to illustrate the analysis. The analysis lead:s
boundary closures to the finite-difference scheme, and different closures need to be apr
to incoming and outgoing waves at each boundary.

When these discrete boundary conditions are applied to the Euler equations, lineari
about a subsonic flow, the local boundary conditions rely on a rational function approxin
tion to the function/1 — z2, which is obtained when waves are decomposed into rightgoin
and leftgoing modes in Fourier space. As in previous boundary conditions [27] for the simj
wave equation, we have shown that several classes of rational function approximations |
to stable, well-posed boundary conditions. The scheme can thus be extended to arbitrz
high order of accuracy.

Numerical experiments using these boundary conditions for the linearized Euler equatit
verify that usually, high-order numerical closures produce smaller reflections than low-orc
closures or ad hoc closures. For vorticity waves leaving the boundary, for instance, higl
order closures always work better. However, there can exist situations where the higher-ol
boundary closures can amplify reflections due to approximations in the continuous bound
conditions. For the linearized Euler equations, for instance, using a high-order closure for
incoming operator 'dat the right boundary amplifies errors from the continuous boundar
conditions. Thus for the linearized Euler equations, one should generally use the clos
bcO from Table | for the incoming operator at the right boundary, and high-order closur
everywhere else.

To summarize the results of the numerical experiments, if a low-order numerical clost
is used, increasing the order of the approximatiop o) beyond a certain point does not
improve results, because the error will be dominated by spurious waves. Conversely, if a ¢
order approximation fop (z) is used, then increasing the order of the discrete closure beyor
a certain point does not improve results, because the error will be dominated by reflecti
of physical waves. High-order closures and high-order rational function approximations
used most effectively when used together.
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We note that the spurious numerical reflections addressed by these boundary conditi
may also be reduced by adding small amounts of artificial viscosity, or numerical smoothir
as one reviewer pointed out. However, artificial viscosity, when added in quantities sufficie
to damp the spurious waves, will also have a significant effect on the smooth waves w
relatively few (5—10) points per wavelength, and thereby degrade the accuracy of the hi
order schemes. The boundary conditions presented in this paper effectively reduce
spurious waves without degrading the accuracy of the method.

Though we have assumed in the analysis that we are dealing with constant coeffici
linear equations, this is a necessary restriction only in a local region near the computatio
boundary. Thus the present boundary conditions can be used in computations where
far-field is governed by the linearized Euler equations, but more complicated (nonlinear
non-constant coefficient) equations are needed for an interior region. Moreover, they ¢
be used on non-uniform meshes, provided that the mesh becomes approximately unif
in the vicinity of the boundary.

In the future, we intend to apply these boundary conditions to more complicated pro
lems. Generalizing these boundary conditions to a single boundary in three dimensic
is straightforward and including systems with uniformly characteristic boundary, such
Maxwell's equations, will be addressed in a forthcoming paper. A more complicated iss!
is how to deal with corners in two dimensions, and corners and edges in three dimensic
In addition, there is an urgent need for accurate boundary conditions for nonlinear equatit
where the nonlinearities near the boundary cannot be ignored (as in a turbulent outflo
We hope that having provided a general framework, wheattitne errors due to artificial
boundary conditiondiave been analyzed, will aid in the development of techniques fo
more complex situations.

APPENDIX

We claim that if a matriXN (i w, «) is defined by
N(iw, k) =k?@l +aiohA) +x(iohA) — (@l —aiohA)
and«* satisfies
(k%@ + aiwhr) + kFiwhi — (@ — aiwhr) =0
then
N(iw, «Hu=0< Au=au.
Proof. («) AssumeAu=Au. Then

N(iw, k)u = [(«F)?@l + aiwhA) + kE(iohA) — (@l —aiohA)]u
= [(«H)?(@a + aiwhr) + k*(iwhr) — (a — aiwhi)]u
= Ou

by definition ofk*.
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(=) If N(iw, «*)u=0, then

[(kD)2@l + aiwhA) + kE(iwhA) — (al — aiwhA)Ju=0. (A1)

By definition of«*, for anyu we have

[(k)%(@a + aiwhi) + kE(iwhi) — (@ — aiwhr)]Ju=0. (A.2)

Subtracting (A.2) from (A.1) gives

[(cF)2aiwh(A = A1) + kFiwh(A— A1) + aiwh(A—A1)]Ju=0
& [k + kF +a](A—AHu=0.

The coefficient in brackets is never zero if the implicit finite-difference scheme is nor
singular, so we havdu = Au, which was to be shown.m
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